Noninvasive system for weight estimation in cactus crops: A YOLOv5-decision tree approach based on interval type-2 fuzzy sets

均方误差 统计 模糊逻辑 数学 人工智能 树(集合论) 计算机科学 区间(图论) 机器学习 模式识别(心理学) 数据挖掘 组合数学 数学分析
作者
José L. Rodríguez-Álvarez,Jorge Luis García-Alcaráz,Rita Puig,Raúl Cuevas-Jacques,José R. Díaz-Reza
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:245: 105064-105064 被引量:1
标识
DOI:10.1016/j.chemolab.2024.105064
摘要

This study proposes a noninvasive system to estimate the weight of a prickly pear cactus (Opuntia ficus-indica), which combines a model based on deep learning to detect and estimate its area and a model based on supervised learning and developed under a type-2 interval fuzzy sets approach to estimate its weight. YOLOv5 was used for detection, which achieved results with an accuracy of 0.999, recall of 0.999, mAP_0.5 of 0.995, and mAP_0.5:0.95 of 0.990. Area estimation is performed based on the object's coordinates in the image. To perform the weight estimation task, a comparative analysis of models based on supervised learning was performed to identify the model that best described the response variable, selecting a decision tree model. The training and adjustment process included the uncertainty in a weight evaluation system using a granatary scale to enhance the weight estimation capability. Using a trapezoidal membership function, the type-2 interval fuzzy set approach was used to convert the collected data into fuzzy numbers. The model findings for the weight estimation task were also favorable, with a model-explained variance R2 of 0.98, a root mean square error (RMSE) of 10.02, and a mean absolute error (MEA) of 6.33 g. Finally, both models were incorporated into a graphical user interface to facilitate their use in the real weight estimation process. A real case application with the proposed system demonstrated its effectiveness in detecting and estimating weight dynamically with an error of 9 g. Therefore, its viability as an alternative system for weight estimation in cactus crops was demonstrated. Furthermore, a comparative analysis demonstrated the superiority of the proposed hybrid approach over similar approaches in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ryan完成签到,获得积分10
2秒前
jue完成签到 ,获得积分10
3秒前
z_king_d_23完成签到,获得积分10
4秒前
JevonCheung完成签到 ,获得积分10
9秒前
tszjw168完成签到 ,获得积分10
11秒前
橙子味的邱憨憨完成签到 ,获得积分10
14秒前
Alger完成签到,获得积分10
17秒前
邵翎365完成签到,获得积分10
22秒前
dhjic完成签到 ,获得积分10
23秒前
勤奋的冰淇淋完成签到 ,获得积分10
30秒前
Till完成签到 ,获得积分10
32秒前
专注灵凡完成签到,获得积分10
35秒前
realmar完成签到,获得积分10
37秒前
七子完成签到,获得积分10
37秒前
zzx396完成签到,获得积分10
38秒前
123应助科研通管家采纳,获得10
41秒前
段仁杰完成签到,获得积分10
41秒前
正直枕头应助科研通管家采纳,获得10
41秒前
41秒前
41秒前
英姑应助科研通管家采纳,获得10
41秒前
Anderson123完成签到,获得积分10
41秒前
搜集达人应助科研通管家采纳,获得10
41秒前
无花果应助科研通管家采纳,获得10
41秒前
酷波er应助科研通管家采纳,获得10
41秒前
Anderson732完成签到,获得积分10
42秒前
Muhi完成签到,获得积分10
42秒前
墨痕mohen完成签到,获得积分10
42秒前
赖建琛完成签到 ,获得积分10
44秒前
zoe完成签到 ,获得积分10
45秒前
董丽君完成签到 ,获得积分0
50秒前
51秒前
冰激凌完成签到,获得积分10
51秒前
富贵儿完成签到 ,获得积分10
52秒前
小高同学完成签到,获得积分10
59秒前
JiangHb完成签到,获得积分10
1分钟前
大个应助体贴的冥王星采纳,获得10
1分钟前
王春琰完成签到 ,获得积分10
1分钟前
zhangzhangzhang完成签到 ,获得积分10
1分钟前
耍酷的梦桃完成签到,获得积分10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139665
求助须知:如何正确求助?哪些是违规求助? 2790602
关于积分的说明 7795670
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176