Dynamic risk assessment method for urban hydrogen refueling stations: A novel dynamic Bayesian network incorporating multiple equipment states and accident cascade effects

故障树分析 贝叶斯网络 多米诺效应 动态贝叶斯网络 泄漏(经济) 环境科学 风险评估 事件树 可靠性工程 计算机科学 事件树分析 工程类 计算机安全 物理 人工智能 量子力学 核物理学 经济 宏观经济学
作者
Yuntao Li,Lin Yu,Qi Jing
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:54: 1367-1385 被引量:26
标识
DOI:10.1016/j.ijhydene.2023.11.324
摘要

Hydrogen refueling stations are increasingly being built in densely populated urban areas and operating under high temperature and pressure conditions. Therefore, the safety of hydrogen refueling stations has received great attention. In present work, a new dynamic quantitative risk assessment method is established for hydrogen leakage at refueling stations based on Bayesian networks (BN). Firstly, risk factors are identified using a fault tree, considering multiple equipment operating states. A Dynamic Bayesian Network (DBN) is established, and event tree analysis is combined to determine accident consequence probabilities. Furthermore, a Bayesian Domino Model is constructed to assess the impact of accident consequence propagation on the probability and risk of hydrogen leakage accidents. Through a typical case study of an off-site hydrogen refueling station, the practicality of the proposed method is validated, the risk factors and safety barriers, the dynamic evolution of hydrogen leakage probabilities within a three-year period are obtained. The probability of hydrogen leakage in hydrogen station is 2.69 × 10−2 in the first month and 2.45 × 10−2 in the 36th month. Simultaneously, the maximum personal risk value for the first month is 5.07 × 10−4. When the Domino effect is considered, the maximum accident probability is 1.96 × 10−3 is obtained in the first month, and the equipment unit with the greatest impact of the accident is A2. Measures were also proposed to reduce hydrogen leakage risks during the operation of off-site hydrogen refueling stations, with an emphasis on prioritizing safety measures for hydrogen storage bundles and risk mitigation strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助韩小小采纳,获得10
1秒前
Hello应助荀连虎采纳,获得10
1秒前
我是老大应助YE采纳,获得10
1秒前
听枫完成签到,获得积分10
1秒前
汉堡包应助lyrtim采纳,获得10
1秒前
风雅发布了新的文献求助10
2秒前
阳阳完成签到,获得积分10
2秒前
muguang67完成签到,获得积分10
2秒前
CipherSage应助呆萌的若云采纳,获得10
2秒前
清爽的采白完成签到 ,获得积分10
2秒前
科研通AI6应助无辜秀采纳,获得10
3秒前
dogzz完成签到,获得积分10
3秒前
3秒前
十七完成签到,获得积分20
3秒前
希淇完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
旺仔小秃头完成签到,获得积分10
4秒前
蓝天发布了新的文献求助10
4秒前
we发布了新的文献求助10
4秒前
ShellyMaya完成签到 ,获得积分10
5秒前
ucas应助朴素的可仁采纳,获得10
5秒前
6秒前
刻苦寒云完成签到,获得积分20
6秒前
肉肉的小屋完成签到,获得积分10
7秒前
7秒前
7秒前
汤圆完成签到,获得积分10
7秒前
旺旺小仙贝完成签到,获得积分20
8秒前
8秒前
Ava应助十七采纳,获得10
9秒前
9秒前
9秒前
暗能量完成签到,获得积分10
10秒前
苹果柜子完成签到,获得积分10
10秒前
10秒前
无名应助哭泣的书兰采纳,获得10
11秒前
niNe3YUE应助廉不可采纳,获得10
11秒前
12秒前
12秒前
Conccuc完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646864
求助须知:如何正确求助?哪些是违规求助? 4772505
关于积分的说明 15036761
捐赠科研通 4805617
什么是DOI,文献DOI怎么找? 2569802
邀请新用户注册赠送积分活动 1526736
关于科研通互助平台的介绍 1485906