材料科学
发光
加密
纳米技术
纳米纤维
爆炸物
光电子学
计算机科学
化学
有机化学
操作系统
作者
Xiaoyan Qiu,Xin Yang,Quanquan Guo,Jize Liu,Xinxing Zhang
出处
期刊:Nano Letters
[American Chemical Society]
日期:2023-12-06
卷期号:23 (24): 11916-11924
被引量:9
标识
DOI:10.1021/acs.nanolett.3c04069
摘要
Developing tunable luminescent materials for high throughput information storage is highly desired following the explosive growth of global data. Although considerable success has been achieved, achieving programmable information encryption remains challenging due to current signal crosstalk problems. Here, we developed long-lived room-temperature phosphorescent organogels enabled by lanthanum-coordinated hydrogen-bonded organic framework nanofibers for time-resolved information programming. Via modulating coassembled lanthanum concentration and Förster resonance energy transfer efficiency, the lifetimes are prolonged and facilely manipulated (20–644 ms), realizing encoding space enlargement and multichannel data outputs. The aggregated strong interfacial supramolecular bonding endows organogels with excellent mechanical toughness (36.16 MJ m–2) and self-healing properties (95.7%), synergistically achieving photostability (97.6% lifetime retention in 10000 fatigue cycles) via suppressing nonradiative decays. This work presents a lifetime-gated information programmable strategy via lanthanum-coordination regulation that promisingly breaks through limitations of current responsive luminescent materials, opening unprecedented avenues for high-level information encryption and protection.
科研通智能强力驱动
Strongly Powered by AbleSci AI