摘要
Chapter 24 Cancer stem cells Sara Ali, Sara Ali Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UKSearch for more papers by this authorDominique Bonnet, Dominique Bonnet Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UKSearch for more papers by this author Sara Ali, Sara Ali Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UKSearch for more papers by this authorDominique Bonnet, Dominique Bonnet Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UKSearch for more papers by this author Book Editor(s):Drew Provan, Drew ProvanSearch for more papers by this authorHillard M. Lazarus, Hillard M. LazarusSearch for more papers by this author First published: 08 March 2024 https://doi.org/10.1002/9781394180486.ch24 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Akin to hematopoietic stem cells, the cancer stem cell (CSC) hypothesis posits that tumors assume a hierarchical organization in which a subpopulation of cells with stem-like properties reside at the apex, and have the capacity to self-renew and regenerate tumors that recapitulate the parental tumor from which they originate. The earliest evidence supporting the concept of a preleukemic state came from clonality studies utilizing X-chromosome inactivation patterns in acute myeloid leukemia patients heterozygous for glucose-6-phosphate dehydrogenase deficiency. The mainstay treatment in patients with hematological malignancies remains traditional therapies that target the tumor bulk but leave CSCs largely untouched, potentially contributing to chemoresistance and disease relapse. Validation of CSC-targeted therapies in the in vivo setting is also paramount, as stemness is a functional definition. This would require having reliable methods to isolate CSCs, which poses an additional challenge, as CSCs can be phenotypically unstable. Further reading The cancer stem cell concept Ailles , L.E. and Weissman , I.L. ( 2007 ). Cancer stem cells in solid tumors . Curr. Opin. Biotechnol. 18 : 460 – 466 . 10.1016/j.copbio.2007.10.007 CASPubMedWeb of Science®Google Scholar Al-Hajj , M. , Wicha , M.S. , Benito-Hernandez , A. et al . ( 2003 ). Prospective identification of tumorigenic breast cancer cells . Proc. Natl. Acad. Sci. U. S. A. 100 : 3983 – 3988 . 10.1073/pnas.0530291100 CASPubMedWeb of Science®Google Scholar Baccelli , I. and Trumpp , A. ( 2012 ). The evolving concept of cancer and metastasis stem cells . J. Cell Biol. 198 : 281 – 293 . 10.1083/jcb.201202014 CASPubMedWeb of Science®Google Scholar Bonnet , D. and Dick , J.E. ( 1997 ). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell . Nat. Med. 3 : 730 – 737 . 10.1038/nm0797-730 CASPubMedWeb of Science®Google Scholar Maehle , A.H. ( 2011 ). Ambiguous cells: the emergence of the stem cell concept in the nineteenth and twentieth centuries . Notes Rec. R. Soc. 65 : 359 – 378 . 10.1098/rsnr.2011.0023 PubMedWeb of Science®Google Scholar Marjanovic , N.D. , Weinberg , R.A. , and Chaffer , C.L. ( 2013 ). Cell plasticity and heterogeneity in cancer . Clin. Chem. 59 : 168 – 179 . 10.1373/clinchem.2012.184655 CASPubMedWeb of Science®Google Scholar Quintana , E. , Shackleton , M. , Sabel , M.S. et al . ( 2008 ). Efficient tumour formation by single human melanoma cells . Nature 456 : 593 – 598 . 10.1038/nature07567 CASPubMedWeb of Science®Google Scholar Schatton , T. , Murphy , G.F. , Frank , N.Y. et al . ( 2008 ). Identification of cells initiating human melanomas . Nature 451 : 345 – 349 . 10.1038/nature06489 CASPubMedWeb of Science®Google Scholar Shackleton , M. , Quintana , E. , Fearon , E.R. , and Morrison , S.J. ( 2009 ). Heterogeneity in cancer: cancer stem cells versus clonal evolution . Cell 138 : 822 – 829 . 10.1016/j.cell.2009.08.017 CASPubMedWeb of Science®Google Scholar Singh , S.K. , Hawkins , C. , Clarke , I.D. et al . ( 2004 ). Identification of human brain tumour initiating cells . Nature 432 : 396 – 401 . 10.1038/nature03128 CASPubMedWeb of Science®Google Scholar Visvader , J.E. and Lindeman , G.J. ( 2008 ). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions . Nat. Rev. Cancer 8 : 755 – 768 . 10.1038/nrc2499 CASPubMedWeb of Science®Google Scholar The cell of origin Cozzio , A. , Passegué , E. , Ayton , P.M. et al . ( 2003 ). Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors . Genes Dev. 17 : 3029 – 3035 . 10.1101/gad.1143403 CASPubMedWeb of Science®Google Scholar Goardon , N. , Marchi , E. , Atzberger , A. et al . ( 2011 ). Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia . Cancer Cell 19 : 138 – 152 . 10.1016/j.ccr.2010.12.012 CASPubMedWeb of Science®Google Scholar Jamieson , C.H.M. , Ailles , L.E. , Dylla , S.J. et al . ( 2004 ). Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML . N. Engl. J. Med. 351 : 657 – 667 . 10.1056/NEJMoa040258 CASPubMedWeb of Science®Google Scholar Kreso , A. and Dick , J.E. ( 2014 ). Evolution of the cancer stem cell model . Cell Stem Cell 14 : 275 – 291 . 10.1016/j.stem.2014.02.006 CASPubMedWeb of Science®Google Scholar Krivtsov , A.V. , Twomey , D. , Feng , Z. et al . ( 2006 ). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9 . Nature 442 : 818 – 822 . 10.1038/nature04980 CASPubMedWeb of Science®Google Scholar Miyamoto , T. , Weissman , I.L. , and Akashi , K. ( 2000 ). AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation . Proc. Natl. Acad. Sci. U. S. A. 97 : 7521 – 7526 . 10.1073/pnas.97.13.7521 CASPubMedWeb of Science®Google Scholar Taussig , D.C. , Vargaftig , J. , Miraki-Moud , F. et al . ( 2010 ). Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34-fraction . Blood 115 : 1976 – 1984 . 10.1182/blood-2009-02-206565 CASPubMedWeb of Science®Google Scholar Pre-leukemic stem cells Corces-Zimmerman , M.R. , Hong , W.-J. , Weissman , I.L. et al . ( 2014 ). Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission . Proc. Natl. Acad. Sci. U. S. A. 111 : 2548 – 2553 . 10.1073/pnas.1324297111 CASPubMedWeb of Science®Google Scholar Ding , L. , Ley , T.J. , Larson , D.E. et al . ( 2012 ). Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing . Nature 481 : 506 – 510 . 10.1038/nature10738 CASPubMedWeb of Science®Google Scholar Fialkow , P.J. , Janssen , J.W. , and Bartram , C.R. ( 1991 ). Clonal remissions in acute nonlymphocytic leukemia: evidence for a multistep pathogenesis of the malignancy . Blood 77 : 1415 – 1417 . 10.1182/blood.V77.7.1415.1415 CASPubMedWeb of Science®Google Scholar Fialkow , P.J. , Singer , J.W. , Raskind , W.H. et al . ( 1987 ). Clonal development, stem-cell differentiation, and clinical remissions in acute non-lymphocytic leukemia . N. Engl. J. Med. 317 : 468 – 473 . 10.1056/NEJM198708203170802 CASPubMedWeb of Science®Google Scholar Genovese , G. , Kähler , A.K. , Handsaker , R.E. et al . ( 2014 ). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence . N. Engl. J. Med. 371 : 2477 – 2487 . 10.1056/NEJMoa1409405 CASPubMedWeb of Science®Google Scholar Jaiswal , S. , Fontanillas , P. , Flannick , J. et al . ( 2014 ). Age-related clonal hematopoiesis associated with adverse outcomes . N. Engl. J. Med. 371 : 2488 – 2498 . 10.1056/NEJMoa1408617 CASPubMedWeb of Science®Google Scholar Jan , M. , Snyder , T.M. , Corces-Zimmerman , M.R. et al . ( 2012 ). Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia . Sci. Transl. Med. 4 : 149ra118 . 10.1126/scitranslmed.3004315 CASPubMedWeb of Science®Google Scholar Miyamoto , T. , Nagafuji , K. , Akashi , K. et al . ( 1996 ). Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia . Blood 87 : 4789 – 4796 . 10.1182/blood.V87.11.4789.bloodjournal87114789 CASPubMedWeb of Science®Google Scholar Rothenberg-Thurley , M. , Amler , S. , Goerlich , D. et al . ( 2018 ). Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia . Leukemia 32 : 1 – 11 . 10.1038/s41375-018-0034-z PubMedWeb of Science®Google Scholar Shlush , L.I. , Zandi , S. , Mitchell , A. et al . ( 2014 ). Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia . Nature 506 : 328 – 333 . 10.1038/nature13038 CASPubMedWeb of Science®Google Scholar Wong , T.N. , Miller , C.A. , Klco , J.M. et al . ( 2016 ). Rapid expansion of pre-existing nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML . Blood 127 : 893 – 897 . 10.1182/blood-2015-10-677021 CASPubMedWeb of Science®Google Scholar Xie , M. , Lu , C. , Wang , J. et al . ( 2014 ). Age-related mutations associated with clonal hematopoietic expansion and malignancies . Nat. Med. 20 : 1472 – 1478 . 10.1038/nm.3733 CASPubMedWeb of Science®Google Scholar Targeting cell surface antigens Hoseini , S.S. and Cheung , N.K. ( 2017 ). Acute myeloid leukemia targets for bispecific antibodies . Blood Cancer J. 7 : e522 . 10.1038/bcj.2017.2 CASPubMedWeb of Science®Google Scholar Jen , E.Y. , Ko , C.-W. , Lee , J.E. et al . ( 2018 ). FDA approval: gemtuzumab ozogamicin for the treatment of adults with newly-diagnosed CD33-positive acute myeloid leukemia . Clin. Cancer Res. 24 ( 14 ): 3242 – 3246 . 10.1158/1078-0432.CCR-17-3179 CASPubMedWeb of Science®Google Scholar Jin , L. , Lee , E.M. , Ramshaw , H.S. et al . ( 2009 ). Monoclonal antibody-mediated targeting of CD123, IL-3 receptor α chain, eliminates human acute myeloid leukemic stem cells . Cell Stem Cell 5 : 31 – 42 . 10.1016/j.stem.2009.04.018 CASPubMedWeb of Science®Google Scholar Kikushige , Y. , Shima , T. , Takayanagi , S.I. et al . ( 2010 ). TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells . Cell Stem Cell 7 : 708 – 717 . 10.1016/j.stem.2010.11.014 CASPubMedWeb of Science®Google Scholar Knapp , D.J.H.F. , Hammond , C.A. , Hui , T. et al . ( 2018 ). Single-cell analysis identifies a CD33 + subset of human cord blood cells with high regenerative potential . Nat. Cell Biol. 20 : 710 – 720 . 10.1038/s41556-018-0104-5 CASPubMedWeb of Science®Google Scholar Liu , K. , Zhu , M. , Huang , Y. et al . ( 2015 ). CD123 and its potential clinical application in leukemias . Life Sci. 122 : 59 – 64 . 10.1016/j.lfs.2014.10.013 CASPubMedWeb of Science®Google Scholar Majeti , R. , Chao , M.P. , Alizadeh , A.A. et al . ( 2009 ). CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells . Cell 138 : 286 – 299 . 10.1016/j.cell.2009.05.045 CASPubMedWeb of Science®Google Scholar Mardiros , A. , Forman , S.J. , and Budde , L.E. ( 2015 ). T cells expressing CD123 chimeric antigen receptors for treatment of acute myeloid leukemia . Curr. Opin. Hematol. 22 : 484 – 488 . 10.1097/MOH.0000000000000190 CASPubMedWeb of Science®Google Scholar Taussig , D.C. , Pearce , D.J. , Simpson , C. et al . ( 2005 ). Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia . Blood 106 : 4086 – 4092 . 10.1182/blood-2005-03-1072 CASPubMedWeb of Science®Google Scholar Van Rhenen , A. , Van Dongen , G.A.M.S. , Kelder , A.L. et al . ( 2007 ). The novel AML stem cell-associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells . Blood 110 : 2659 – 2666 . 10.1182/blood-2007-03-083048 CASPubMedWeb of Science®Google Scholar Targeting CSC self-renewal Dierks , C. , Beigi , R. , Guo , G.-R. et al . ( 2008 ). Expansion of Bcr-Abl-positive leukemic stem cells is dependent on hedgehog pathway activation . Cancer Cell 14 : 238 – 249 . 10.1016/j.ccr.2008.08.003 CASPubMedWeb of Science®Google Scholar Gang , E.J. , Hsieh , Y.T. , Pham , J. et al . ( 2014 ). Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia . Oncogene 33 : 2169 – 2178 . 10.1038/onc.2013.169 CASPubMedWeb of Science®Google Scholar Giambra , V. , Jenkins , C.E. , Lam , S.H. et al . ( 2015 ). Leukemia stem cells in T-ALL require active Hif1α and Wnt signaling . Blood 125 : 3917 – 3927 . 10.1182/blood-2014-10-609370 CASPubMedWeb of Science®Google Scholar Tatarek , J. , Cullion , K. , Ashworth , T. et al . ( 2011 ). Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL . Blood 118 : 1579 – 1590 . 10.1182/blood-2010-08-300343 CASPubMedWeb of Science®Google Scholar Wang , Y. , Krivtsov , A.V. , Sinha , A.U. et al . ( 2010 ). The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML . Science (New York, N.Y.) 327 : 1650 – 1653 . 10.1126/science.1186624 CASPubMedWeb of Science®Google Scholar Yeung , J. , Esposito , M.T. , Gandillet , A. et al . ( 2010 ). β-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells . Cancer Cell 18 : 606 – 618 . 10.1016/j.ccr.2010.10.032 CASPubMedWeb of Science®Google Scholar Targeting CSC survival Guzman , M.L. , Neering , S.J. , Upchurch , D. et al . ( 2001 ). Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells . Blood 98 : 2301 – 2307 . 10.1182/blood.V98.8.2301 CASPubMedWeb of Science®Google Scholar Park , S. , Chapuis , N. , Tamburini , J. et al . ( 2010 ). Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia . Haematologica 95 : 819 – 828 . 10.3324/haematol.2009.013797 CASPubMedWeb of Science®Google Scholar Targeting LSC dormancy Ito , K. , Bernardi , R. , Morotti , A. et al . ( 2008 ). PML targeting eradicates quiescent leukaemia-initiating cells . Nature 453 : 1072 – 1078 . 10.1038/nature07016 CASPubMedWeb of Science®Google Scholar Löwenberg , B. , van Putten , W. , Theobald , M. et al . ( 2003 ). Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia . N. Engl. J. Med. 349 : 743 – 752 . 10.1056/NEJMoa025406 PubMedWeb of Science®Google Scholar Saito , Y. , Uchida , N. , Tanaka , S. et al . ( 2010 ). Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML . Nat. Biotechnol. 28 : 275 – 280 . 10.1038/nbt.1607 CASPubMedWeb of Science®Google Scholar Targeting the CSC niche Arranz , L. , Sánchez-Aguilera , A. , Martín-Pérez , D. et al . ( 2014 ). Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms . Nature 512 : 78 – 81 . 10.1038/nature13383 CASPubMedWeb of Science®Google Scholar Hsieh , Y. , Jiang , E. , Pham , J. et al . ( 2013 ). VLA4 blockade in acute myeloid leukemia . In 55th ASH Annual Meeting and Exposition , 122 , 7–13 December 2013. New Orleans, LA : American Society of Hematology . 10.1182/blood.V122.21.3944.3944 Google Scholar Jin , L. , Hope , K.J. , Zhai , Q. et al . ( 2006 ). Targeting of CD44 eradicates human acute myeloid leukemic stem cells . Nat. Med. 12 : 1167 – 1174 . 10.1038/nm1483 CASPubMedWeb of Science®Google Scholar Kode , A. , Manavalan , J.S. , Mosialou , I. et al . ( 2014 ). Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts . Nature 506 : 240 – 244 . 10.1038/nature12883 CASPubMedWeb of Science®Google Scholar Matsunaga , T. , Takemoto , N. , Sato , T. et al . ( 2003 ). Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia . Nat. Med. 9 : 1158 – 1165 . 10.1038/nm909 CASPubMedWeb of Science®Google Scholar Passaro , D. , Di Tullio , A. , Abarrategi , A. et al . ( 2017 ). Increased vascular permeability in the bone marrow microenvironment contributes to disease progression and drug response in acute myeloid leukemia . Cancer Cell 32 : 324 – 341.e6 . 10.1016/j.ccell.2017.08.001 CASPubMedWeb of Science®Google Scholar Raaijmakers , M.H.G.P. , Mukherjee , S. , Guo , S. et al . ( 2010 ). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia . Nature 464 : 852 – 857 . 10.1038/nature08851 CASPubMedWeb of Science®Google Scholar Schepers , K. , Pietras , E.M. , Reynaud , D. et al . ( 2013 ). Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche . Cell Stem Cell 13 : 285 – 299 . 10.1016/j.stem.2013.06.009 CASPubMedWeb of Science®Google Scholar Spoo , A.C. , Lübbert , M. , Wierda , W.G. , and Burger , J.A. ( 2007 ). CXCR4 is a prognostic marker in acute myelogenous leukemia . Blood 109 : 786 – 791 . 10.1182/blood-2006-05-024844 CASPubMedWeb of Science®Google Scholar Tavor , S. , Petit , I. , Porozov , S. et al . ( 2004 ). CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice . Cancer Res. 64 : 2817 – 2824 . 10.1158/0008-5472.CAN-03-3693 CASPubMedWeb of Science®Google Scholar Zeng , Z. , Shi , Y.X. , Samudio , I.J. et al . ( 2009 ). Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML . Blood 113 : 6215 – 6224 . 10.1182/blood-2008-05-158311 CASPubMedWeb of Science®Google Scholar Zhang , B. , Ho , Y.W. , Huang , Q. et al . ( 2012 ). Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia . Cancer Cell 21 : 577 – 592 . 10.1016/j.ccr.2012.02.018 CASPubMedWeb of Science®Google Scholar Zöller , M. ( 2015 ). CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells . Front. Immunol. 6 : 235 . PubMedWeb of Science®Google Scholar Targeting epigenetic modifiers Craddock , C. , Quek , L. , Goardon , N. et al . ( 2013 ). Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia . Leukemia 27 : 1028 – 1036 . 10.1038/leu.2012.312 CASPubMedWeb of Science®Google Scholar Göllner , S. , Oellerich , T. , Agrawal-Singh , S. et al . ( 2017 ). Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia . Nat. Med. 23 : 69 – 78 . 10.1038/nm.4247 PubMedWeb of Science®Google Scholar Guzman , M.L. , Yang , N. , Sharma , K.K. et al . ( 2014 ). Selective activity of the histone deacetylase inhibitor AR-42 against leukemia stem cells: a novel potential strategy in acute myelogenous leukemia . Mol. Cancer Ther. 13 : 1979 – 1990 . 10.1158/1535-7163.MCT-13-0963 CASPubMedWeb of Science®Google Scholar Harris , W.J. , Huang , X. , Lynch , J.T. et al . ( 2012 ). The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells . Cancer Cell 21 : 473 – 487 . 10.1016/j.ccr.2012.03.014 CASPubMedWeb of Science®Google Scholar He , J. , Nguyen , A.T. , and Zhang , Y. ( 2011 ). KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia . Blood 117 : 3869 – 3880 . 10.1182/blood-2010-10-312736 CASPubMedWeb of Science®Google Scholar Herrmann , H. , Blatt , K. , Shi , J. et al . ( 2013 ). Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia (AML) . Oncotarget 3 : 1588 – 1599 . 10.18632/oncotarget.733 Google Scholar Nguyen , A.T. , Taranova , O. , He , J. , and Zhang , Y. ( 2011 ). DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis . Blood 117 : 6912 – 6922 . 10.1182/blood-2011-02-334359 CASPubMedWeb of Science®Google Scholar Scott , M.T. , Korfi , K. , Saffrey , P. et al . ( 2016 ). Epigenetic reprogramming sensitizes CML stem cells to combined EZH2 and tyrosine kinase inhibition . Cancer Discov. 6 : 1248 – 1257 . 10.1158/2159-8290.CD-16-0263 CASPubMedWeb of Science®Google Scholar Xie , H. , Peng , C. , Huang , J. et al . ( 2016 ). Chronic myelogenous leukemia-initiating cells require polycomb group protein EZH2 . Cancer Discov. 6 : 1237 – 1247 . 10.1158/2159-8290.CD-15-1439 CASPubMedWeb of Science®Google Scholar Zhou , J. , Bi , C. , Cheong , L.L. et al . ( 2011 ). The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML . Blood 118 : 2830 – 2839 . 10.1182/blood-2010-07-294827 PubMedWeb of Science®Google Scholar Other CSC-targeted therapies Chan , S.M. , Thomas , D. , Corces-Zimmerman , M.R. et al . ( 2015 ). Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia . Nat. Med. 21 : 178 – 184 . 10.1038/nm.3788 CASPubMedWeb of Science®Google Scholar Kuntz , E.M. , Baquero , P. , Michie , A.M. et al . ( 2017 ). Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells . Nat. Med. 23 : 1234 – 1240 . 10.1038/nm.4399 CASPubMedWeb of Science®Google Scholar Lagadinou , E.D. , Sach , A. , Callahan , K. et al . ( 2013 ). BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells . Cell Stem Cell 12 : 329 – 341 . 10.1016/j.stem.2012.12.013 CASPubMedWeb of Science®Google Scholar Rouault-Pierre , K. , Lopez-Onieva , L. , Foster , K. et al . ( 2013 ). HIF-2a protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress . Cell Stem Cell 13 : 549 – 563 . 10.1016/j.stem.2013.08.011 CASPubMedWeb of Science®Google Scholar Wang , Y. , Liu , Y. , Malek , S.N. et al . ( 2011 ). Targeting HIF1α eliminates cancer stem cells in hematological malignancies . Cell Stem Cell 8 : 399 – 411 . 10.1016/j.stem.2011.02.006 CASPubMedWeb of Science®Google Scholar Conclusion Pollyea , D.A. and Jordan , C.T. ( 2017 ). Therapeutic targeting of acute myeloid leukemia stem cells . Blood 129 : 1627 – 1635 . 10.1182/blood-2016-10-696039 CASPubMedWeb of Science®Google Scholar Molecular Hematology, Fifth Edition ReferencesRelatedInformation