AptaDiff: de novo design and optimization of aptamers based on diffusion models

适体 指数富集配体系统进化 SELEX适体技术 计算生物学 生物信息学 贝叶斯优化 计算机科学 化学 生物 核糖核酸 分子生物学 人工智能 生物化学 基因
作者
Zhen Wang,Ziqi Liu,Wei Zhang,Yanjun Li,Yizhen Feng,Shaokang Lv,Han Diao,Zhaofeng Luo,Pengju Yan,Min He,Xiaolin Li
标识
DOI:10.1101/2023.11.25.568693
摘要

Abstract Aptamers are single-stranded nucleic acid ligands, featuring high affinity and specificity to target molecules. Traditionally they are identified from large DNA/RNA libraries using in vitro methods, like Systematic Evolution of Ligands by Exponential Enrichment (SELEX). However, these libraries capture only a small fraction of theoretical sequence space, and various aptamer candidates are constrained by actual sequencing capabilities from the experiment. Addressing this, we proposed AptaDiff, the first in silico aptamer design and optimization method based on the diffusion model. Our Aptadiff can generate aptamers beyond the constraints of high-throughput sequencing data, leveraging motif-dependent latent embeddings from variational autoencoder, and can optimize aptamers by affinity-guided aptamer generation according to Bayesian optimization. Comparative evaluations revealed AptaDiff’s superiority over existing aptamer generation methods in terms of quality and fidelity across four high-throughput screening data targeting distinct proteins. Moreover, Surface Plasmon Resonance (SPR) experiments were conducted to validate the binding affinity of aptamers generated through Bayesian optimization for two target proteins. The results unveiled a significant boost of 87.9% and 60.2% in RU values, along with a 3.6-fold and 2.4-fold decrease in KD values for the respective target proteins. Notably, the optimized aptamers demonstrated superior binding affinity compared to top experimental candidates selected through SELEX, underscoring the promising outcomes of our AptaDiff in accelerating the discovery of superior aptamers. Key Points We proposed AptaDiff, the first in silico aptamer design method based on the diffusion model. Aptadiff can generate aptamers beyond the constraints of high-throughput sequencing data. Aptadiff can optimize aptamers through affinity-guided generation via Bayesian optimization within a motif-dependent latent space, and the affinity of the optimized aptamers to the target protein is better than the best experimental candidate from traditional SELEX screening. Aptadiff consistently outperforms the current state-of-the-art method in terms of quality and fidelity across high-throughput screening data targeting distinct proteins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小螃蟹完成签到 ,获得积分10
刚刚
土豆淀粉完成签到 ,获得积分10
2秒前
苏我入鹿完成签到,获得积分10
3秒前
4秒前
guoguo1119完成签到 ,获得积分10
7秒前
科研猫完成签到,获得积分10
8秒前
ChatGPT发布了新的文献求助10
16秒前
20秒前
24秒前
24秒前
NameCYQ完成签到,获得积分10
31秒前
周全完成签到 ,获得积分10
31秒前
美丽的问安完成签到 ,获得积分10
33秒前
xxfsx应助spike采纳,获得10
41秒前
小章鱼完成签到,获得积分10
45秒前
凌泉完成签到 ,获得积分10
47秒前
52秒前
朱明完成签到 ,获得积分10
52秒前
风信子完成签到,获得积分10
53秒前
小牛完成签到 ,获得积分10
57秒前
58秒前
糯米团的完成签到 ,获得积分10
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
Maestro_S应助科研通管家采纳,获得20
1分钟前
aldehyde应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得100
1分钟前
aldehyde应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
aldehyde应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
aldehyde应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得20
1分钟前
LINGYUAN1991应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
aldehyde应助科研通管家采纳,获得10
1分钟前
Smar_zcl应助科研通管家采纳,获得150
1分钟前
小周完成签到 ,获得积分10
1分钟前
大大大忽悠完成签到 ,获得积分10
1分钟前
热心如花完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304103
求助须知:如何正确求助?哪些是违规求助? 4450691
关于积分的说明 13849638
捐赠科研通 4337600
什么是DOI,文献DOI怎么找? 2381529
邀请新用户注册赠送积分活动 1376533
关于科研通互助平台的介绍 1343502