One-Week-Ahead Prediction of Cyanobacterial Harmful Algal Blooms in Iowa Lakes

环境科学 水质 决策树 水华 人工神经网络 特征选择 逻辑回归 机器学习 计算机科学 生态学 生物 营养物 浮游植物
作者
Paul Villanueva,Jihoon Yang,Lorien Radmer,Xuewei Liang,Tania Leung,Kaoru Ikuma,Elizabeth D. Swanner,Adina Howe,Jae‐Jin Lee
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (49): 20636-20646 被引量:5
标识
DOI:10.1021/acs.est.3c07764
摘要

Cyanobacterial harmful algal blooms (CyanoHABs) pose serious risks to inland water resources. Despite advancements in our understanding of associated environmental factors and modeling efforts, predicting CyanoHABs remains challenging. Leveraging an integrated water quality data collection effort in Iowa lakes, this study aimed to identify factors associated with hazardous microcystin levels and develop one-week-ahead predictive classification models. Using water samples from 38 Iowa lakes collected between 2018 and 2021, feature selection was conducted considering both linear and nonlinear properties. Subsequently, we developed three model types (Neural Network, XGBoost, and Logistic Regression) with different sampling strategies using the nine selected variables (mcyA_M, TKN, % hay/pasture, pH, mcyA_M:16S, % developed, DOC, dewpoint temperature, and ortho-P). Evaluation metrics demonstrated the strong performance of the Neural Network with oversampling (ROC-AUC 0.940, accuracy 0.861, sensitivity 0.857, specificity 0.857, LR+ 5.993, and 1/LR– 5.993), as well as the XGBoost with downsampling (ROC-AUC 0.944, accuracy 0.831, sensitivity 0.928, specificity 0.833, LR+ 5.557, and 1/LR– 11.569). This study exhibited the intricacies of modeling with limited data and class imbalances, underscoring the importance of continuous monitoring and data collection to improve predictive accuracy. Also, the methodologies employed can serve as meaningful references for researchers tackling similar challenges in diverse environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山南驳回了打打应助
1秒前
Chaos完成签到,获得积分10
1秒前
1秒前
遇上就这样吧应助kento采纳,获得50
2秒前
3秒前
3秒前
4秒前
5秒前
梨花月应助司空元正采纳,获得10
5秒前
6秒前
学fei了吗完成签到,获得积分10
6秒前
11完成签到,获得积分10
8秒前
8秒前
浮游应助咿呀呀采纳,获得10
8秒前
孙勇发发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
天天快乐应助神秘人采纳,获得10
13秒前
14秒前
友好德天完成签到 ,获得积分10
16秒前
浮游应助风中的身影采纳,获得10
17秒前
17秒前
真水无香完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
怕孤独的忆南完成签到,获得积分10
21秒前
Melody发布了新的文献求助10
22秒前
22秒前
23秒前
浮游应助lllll采纳,获得10
23秒前
24秒前
情怀应助小冯采纳,获得10
24秒前
25秒前
25秒前
科研通AI6应助Seven采纳,获得20
25秒前
25秒前
xc完成签到,获得积分10
26秒前
26秒前
王瑶完成签到,获得积分20
27秒前
科研通AI5应助dqw采纳,获得10
27秒前
sihan625发布了新的文献求助10
27秒前
爱撒娇的岱周关注了科研通微信公众号
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135008
求助须知:如何正确求助?哪些是违规求助? 4335582
关于积分的说明 13507290
捐赠科研通 4173211
什么是DOI,文献DOI怎么找? 2288286
邀请新用户注册赠送积分活动 1289005
关于科研通互助平台的介绍 1230049