One-Week-Ahead Prediction of Cyanobacterial Harmful Algal Blooms in Iowa Lakes

环境科学 水质 决策树 水华 人工神经网络 特征选择 逻辑回归 机器学习 计算机科学 生态学 生物 营养物 浮游植物
作者
Paul Villanueva,Jihoon Yang,Lorien Radmer,Xuewei Liang,Tania Leung,Kaoru Ikuma,Elizabeth D. Swanner,Adina Howe,Jae‐Jin Lee
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (49): 20636-20646 被引量:5
标识
DOI:10.1021/acs.est.3c07764
摘要

Cyanobacterial harmful algal blooms (CyanoHABs) pose serious risks to inland water resources. Despite advancements in our understanding of associated environmental factors and modeling efforts, predicting CyanoHABs remains challenging. Leveraging an integrated water quality data collection effort in Iowa lakes, this study aimed to identify factors associated with hazardous microcystin levels and develop one-week-ahead predictive classification models. Using water samples from 38 Iowa lakes collected between 2018 and 2021, feature selection was conducted considering both linear and nonlinear properties. Subsequently, we developed three model types (Neural Network, XGBoost, and Logistic Regression) with different sampling strategies using the nine selected variables (mcyA_M, TKN, % hay/pasture, pH, mcyA_M:16S, % developed, DOC, dewpoint temperature, and ortho-P). Evaluation metrics demonstrated the strong performance of the Neural Network with oversampling (ROC-AUC 0.940, accuracy 0.861, sensitivity 0.857, specificity 0.857, LR+ 5.993, and 1/LR– 5.993), as well as the XGBoost with downsampling (ROC-AUC 0.944, accuracy 0.831, sensitivity 0.928, specificity 0.833, LR+ 5.557, and 1/LR– 11.569). This study exhibited the intricacies of modeling with limited data and class imbalances, underscoring the importance of continuous monitoring and data collection to improve predictive accuracy. Also, the methodologies employed can serve as meaningful references for researchers tackling similar challenges in diverse environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Knight发布了新的文献求助10
刚刚
Nolan发布了新的文献求助10
刚刚
71完成签到,获得积分10
1秒前
脑洞疼应助Ambt丨on采纳,获得10
1秒前
Annie完成签到 ,获得积分20
1秒前
852应助三石采纳,获得10
2秒前
务实青筠完成签到 ,获得积分10
4秒前
十九完成签到,获得积分10
4秒前
5秒前
CodeCraft应助swallow采纳,获得10
6秒前
YuxinChen发布了新的文献求助10
7秒前
浮游应助lly采纳,获得10
7秒前
大模型应助Patrick采纳,获得10
8秒前
8秒前
10秒前
Ambt丨on发布了新的文献求助10
13秒前
HiQ关闭了HiQ文献求助
15秒前
鲤鱼会赢完成签到,获得积分10
16秒前
磕研修狗完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
帅气书白完成签到,获得积分10
18秒前
眼睛大的冰岚完成签到,获得积分10
20秒前
Xinxxx应助可可采纳,获得10
23秒前
swallow发布了新的文献求助10
23秒前
不爱科研完成签到,获得积分10
23秒前
lulu发布了新的文献求助10
24秒前
科目三应助ForestEcho采纳,获得10
26秒前
xyyj_89完成签到,获得积分10
27秒前
酷波er应助gjm采纳,获得10
29秒前
zc完成签到 ,获得积分10
30秒前
风趣的新竹完成签到,获得积分10
31秒前
32秒前
32秒前
西扬完成签到 ,获得积分10
33秒前
34秒前
35秒前
36秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331