Development and Validation of a Predictive Model for Intraoperative Hypothermia in Elderly Patients Undergoing Craniocerebral Tumor Resection: A Retrospective Cohort Study

医学 列线图 接收机工作特性 回顾性队列研究 置信区间 逻辑回归 外科 麻醉 内科学
作者
Xi Yuan,Qing Liu,Huixian Zhou,Liangyan Ni,Xuequn Yin,Xinmei Zhang,Meilan Du,Xiaohong Du
出处
期刊:World Neurosurgery [Elsevier]
卷期号:184: e593-e602 被引量:2
标识
DOI:10.1016/j.wneu.2024.01.174
摘要

Timely identification of elderly patients who are at risk of developing intraoperative hypothermia (IH) is imperative to enable appropriate interventions. This study aimed to develop a nomogram for predicting the risk of IH in elderly patients undergoing resection of craniocerebral tumor, and to validate its effectiveness. Elderly patients who underwent craniocerebral tumor resection at a large tertiary hospital in eastern China between January 2019 and December 2022 were included (n = 988). The study population was divided into a training set and a validation set by time period. Risk factors identified through the Least Absolute Shrinkage and Selection Operator method and logistic regression analysis were used to establish the nomogram. The model was validated internally by Bootstrap method and externally by validation set through receiver operating characteristic curve analysis, Hosmer-Lemeshow test, and decision curve analysis. A total of 273 (27.6%) patients developed IH. Duration of anesthesia (P < 0.001), blood loss (P < 0.001), preoperative temperature (P < 0.001), tumor location (P < 0.001), age (P < 0.05), and mean arterial pressure (P < 0.05) were identified as independent risk factors for IH. A nomogram integrating these 6 factors was constructed. The area under the curve was 0.773 (95% confidence interval: 0.735–0.811) (70.5% specificity and 75.0% sensitivity), indicating good predictive performance. The decision curve analysis demonstrated the clinical benefit of using the nomogram. Our model showed good performance in identifying elderly patients who are at high risk of developing IH during craniocerebral tumor resection. The nomogram can help inform timely preventive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
害人精x完成签到,获得积分10
1秒前
1秒前
kk发布了新的文献求助10
2秒前
怪咖发布了新的文献求助10
2秒前
2秒前
柳易槐完成签到,获得积分10
3秒前
3秒前
科研通AI6应助wzt采纳,获得10
3秒前
3秒前
4秒前
刘一一发布了新的文献求助10
5秒前
lina发布了新的文献求助10
5秒前
5秒前
5秒前
123发布了新的文献求助10
7秒前
小马甲应助feiniao采纳,获得10
7秒前
Zx_1993应助wackykao采纳,获得10
7秒前
7秒前
。.。发布了新的文献求助10
7秒前
美好谷芹发布了新的文献求助10
7秒前
7秒前
8秒前
DaFei完成签到,获得积分20
8秒前
英姑应助madao采纳,获得10
8秒前
9秒前
Hanoi347发布了新的文献求助10
9秒前
研友_ndDPBn完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
无极微光应助迷路的寄风采纳,获得20
11秒前
11秒前
kk雯完成签到,获得积分20
12秒前
dx发布了新的文献求助30
13秒前
Attract发布了新的文献求助10
13秒前
夏日完成签到,获得积分10
14秒前
仁爱妙菱发布了新的文献求助10
14秒前
jl发布了新的文献求助10
15秒前
Ship发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175