Development and Validation of a Predictive Model for Intraoperative Hypothermia in Elderly Patients Undergoing Craniocerebral Tumor Resection: A Retrospective Cohort Study

医学 列线图 接收机工作特性 回顾性队列研究 置信区间 逻辑回归 外科 麻醉 内科学
作者
Xi Yuan,Lei Zhu,Huixian Zhou,Liangyan Ni,Xuequn Yin,Xinmei Zhang,Meilan Du,Xiaohong Du
出处
期刊:World Neurosurgery [Elsevier]
卷期号:184: e593-e602
标识
DOI:10.1016/j.wneu.2024.01.174
摘要

Timely identification of elderly patients who are at risk of developing intraoperative hypothermia (IH) is imperative to enable appropriate interventions. This study aimed to develop a nomogram for predicting the risk of IH in elderly patients undergoing resection of craniocerebral tumor, and to validate its effectiveness. Elderly patients who underwent craniocerebral tumor resection at a large tertiary hospital in eastern China between January 2019 and December 2022 were included (n = 988). The study population was divided into a training set and a validation set by time period. Risk factors identified through the Least Absolute Shrinkage and Selection Operator method and logistic regression analysis were used to establish the nomogram. The model was validated internally by Bootstrap method and externally by validation set through receiver operating characteristic curve analysis, Hosmer-Lemeshow test, and decision curve analysis. A total of 273 (27.6%) patients developed IH. Duration of anesthesia (P < 0.001), blood loss (P < 0.001), preoperative temperature (P < 0.001), tumor location (P < 0.001), age (P < 0.05), and mean arterial pressure (P < 0.05) were identified as independent risk factors for IH. A nomogram integrating these 6 factors was constructed. The area under the curve was 0.773 (95% confidence interval: 0.735–0.811) (70.5% specificity and 75.0% sensitivity), indicating good predictive performance. The decision curve analysis demonstrated the clinical benefit of using the nomogram. Our model showed good performance in identifying elderly patients who are at high risk of developing IH during craniocerebral tumor resection. The nomogram can help inform timely preventive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王灰灰1完成签到 ,获得积分10
刚刚
3秒前
priss111应助Li采纳,获得30
4秒前
liberation完成签到 ,获得积分10
5秒前
丘比特应助Annabelle采纳,获得10
7秒前
聪明眼睛发布了新的文献求助10
8秒前
ZJ完成签到,获得积分10
8秒前
10秒前
Jerry完成签到,获得积分10
11秒前
ff'f'f'f'f'f'f完成签到,获得积分20
13秒前
14秒前
16秒前
聪明眼睛完成签到,获得积分10
16秒前
王了了完成签到 ,获得积分10
19秒前
哈利波特完成签到,获得积分10
19秒前
21秒前
123完成签到 ,获得积分10
21秒前
27秒前
饺子完成签到,获得积分10
27秒前
水草帽完成签到 ,获得积分10
28秒前
32秒前
称心小白菜完成签到,获得积分10
32秒前
lmwnb完成签到,获得积分10
33秒前
科研通AI2S应助荔枝采纳,获得10
34秒前
35秒前
36秒前
拼搏的飞薇完成签到,获得积分10
36秒前
阿邦发布了新的文献求助10
37秒前
37秒前
39秒前
哈哈发布了新的文献求助10
39秒前
Perry完成签到,获得积分10
39秒前
幼荷完成签到 ,获得积分10
40秒前
马剑完成签到,获得积分10
41秒前
47秒前
Hello应助哈哈采纳,获得10
51秒前
FrancisCho发布了新的文献求助10
51秒前
53秒前
Xunr完成签到 ,获得积分10
55秒前
阿邦完成签到 ,获得积分10
56秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242047
求助须知:如何正确求助?哪些是违规求助? 2886366
关于积分的说明 8243024
捐赠科研通 2555001
什么是DOI,文献DOI怎么找? 1383192
科研通“疑难数据库(出版商)”最低求助积分说明 649658
邀请新用户注册赠送积分活动 625417