Development and Validation of a Predictive Model for Intraoperative Hypothermia in Elderly Patients Undergoing Craniocerebral Tumor Resection: A Retrospective Cohort Study

医学 列线图 接收机工作特性 回顾性队列研究 置信区间 逻辑回归 外科 麻醉 内科学
作者
Xi Yuan,Qing Liu,Huixian Zhou,Liangyan Ni,Xuequn Yin,Xinmei Zhang,Meilan Du,Xiaohong Du
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:184: e593-e602 被引量:2
标识
DOI:10.1016/j.wneu.2024.01.174
摘要

Timely identification of elderly patients who are at risk of developing intraoperative hypothermia (IH) is imperative to enable appropriate interventions. This study aimed to develop a nomogram for predicting the risk of IH in elderly patients undergoing resection of craniocerebral tumor, and to validate its effectiveness. Elderly patients who underwent craniocerebral tumor resection at a large tertiary hospital in eastern China between January 2019 and December 2022 were included (n = 988). The study population was divided into a training set and a validation set by time period. Risk factors identified through the Least Absolute Shrinkage and Selection Operator method and logistic regression analysis were used to establish the nomogram. The model was validated internally by Bootstrap method and externally by validation set through receiver operating characteristic curve analysis, Hosmer-Lemeshow test, and decision curve analysis. A total of 273 (27.6%) patients developed IH. Duration of anesthesia (P < 0.001), blood loss (P < 0.001), preoperative temperature (P < 0.001), tumor location (P < 0.001), age (P < 0.05), and mean arterial pressure (P < 0.05) were identified as independent risk factors for IH. A nomogram integrating these 6 factors was constructed. The area under the curve was 0.773 (95% confidence interval: 0.735–0.811) (70.5% specificity and 75.0% sensitivity), indicating good predictive performance. The decision curve analysis demonstrated the clinical benefit of using the nomogram. Our model showed good performance in identifying elderly patients who are at high risk of developing IH during craniocerebral tumor resection. The nomogram can help inform timely preventive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCH_zhu完成签到,获得积分10
刚刚
记忆完成签到,获得积分10
1秒前
小曹完成签到,获得积分10
1秒前
火山上的鲍师傅完成签到,获得积分10
1秒前
Chunlan完成签到,获得积分10
2秒前
免疫与代谢研究完成签到,获得积分10
2秒前
莫名完成签到,获得积分10
2秒前
云雨完成签到 ,获得积分10
2秒前
xxwyj完成签到,获得积分10
2秒前
TaiLongYang发布了新的文献求助10
2秒前
3秒前
科目三应助TAC采纳,获得10
4秒前
SCH_zhu发布了新的文献求助10
4秒前
5秒前
5秒前
Epiphany完成签到,获得积分10
5秒前
JUGG完成签到,获得积分10
5秒前
paggyfight发布了新的文献求助10
5秒前
北极星发布了新的文献求助10
6秒前
tang完成签到 ,获得积分20
6秒前
6秒前
友好聋五完成签到,获得积分10
7秒前
Boring完成签到,获得积分10
7秒前
酷炫甜瓜完成签到,获得积分10
8秒前
ZYY完成签到,获得积分10
8秒前
于淼完成签到,获得积分10
9秒前
魔术师完成签到,获得积分10
9秒前
啊哈完成签到,获得积分10
10秒前
WatsonJiang完成签到,获得积分10
10秒前
hhan发布了新的文献求助10
11秒前
dunhuang完成签到,获得积分10
11秒前
冬至完成签到,获得积分10
11秒前
紧张的以山完成签到,获得积分10
11秒前
西升东落完成签到 ,获得积分10
11秒前
科研混子完成签到,获得积分10
11秒前
lixinlong完成签到,获得积分10
12秒前
之后再说咯完成签到 ,获得积分10
12秒前
Yurrrrt完成签到,获得积分10
12秒前
12秒前
飞0802完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256776
求助须知:如何正确求助?哪些是违规求助? 4418917
关于积分的说明 13754171
捐赠科研通 4292127
什么是DOI,文献DOI怎么找? 2355327
邀请新用户注册赠送积分活动 1351803
关于科研通互助平台的介绍 1312558