已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting malnutrition in gastric cancer patients using computed tomography(CT) deep learning features and clinical data

医学 接收机工作特性 癌症 营养不良 体质指数 放射科 曲线下面积 多元分析 深度学习 核医学 人工智能 内科学 计算机科学
作者
Weijia Huang,Congjun Wang,Ye Wang,Yu Zhu,Shengyu Wang,Jian Yang,Shunzu Lu,Chunyi Zhou,Erlv Wu,Junqiang Chen
出处
期刊:Clinical Nutrition [Elsevier BV]
卷期号:43 (3): 881-891 被引量:9
标识
DOI:10.1016/j.clnu.2024.02.005
摘要

Objective:The aim of this study is using clinical factors and non-enhanced computed tomography (CT) deep features of the psoas muscles at third lumbar vertebral (L3) level to construct a model to predict malnutrition in gastric cancer before surgery, and to provide a new nutritional status assessment and survival assessment tool for gastric cancer patients. Methods: A retrospective analysis of 312 patients of gastric cancer were divided into malnutrition group and normal group based on Nutrition Risk Screening 2002(NRS-2002).312 regions of interest (ROI) of the psoas muscles at L3 level of non-enhanced CT were delineated.Deep learning (DL) features were extracted from the ROI using a deep migration model and were screened by principal component analysis (PCA) and least-squares operator (LASSO).The clinical predictors included Body Mass Index (BMI), lymphocyte and albumin.Both deep learning model (including deep learning features) and mixed model (including selected deep learning features and selected clinical predictors) were constructed by 11 classifiers.The model was evaluated and selected by calculating receiver operating characteristic (ROC), area under curve (AUC), accuracy, sensitivity and specificity, calibration curve and decision curve analysis (DCA).The Cohen's Kappa coefficient (κ) was using to compare the diagnostic agreement for malnutrition between the mixed model and the GLIM in gastric cancer patients. Result:The results of logistics multivariate analysis showed that BMI [OR=0.569(95% CI 0.491-0.660)],lymphocyte [OR=0.638(95% CI 0.408-0.998)],and albumin [OR=0.924(95% CI 0.859-0.994)]were clinically independent malnutrition of gastric J o u r n a l P r e -p r o o f cancer predictor(P<0.05).Among the 11 classifiers, the Multilayer Perceptron (MLP)were selected as the best classifier.The AUC of the training and test sets for deep learning model were 0.806 (95% CI 0.7485 -0.8635) and 0.769 (95% CI 0.673 -0.863) and with accuracies were 0.734 and 0.766, respectively.The AUC of the training and test sets for the mixed model were 0.909 (95% CI 0.869 -0.948) and 0.857 (95% CI 0.782 -0.931) and with accuracies of 0.845 and 0.861, respectively.The DCA confirmed the clinical benefit of the both models.The Cohen's Kappa coefficient (κ) was 0.647 (P<0.001).Diagnostic agreement for malnutrition between the mixed model and GLIM criteria was good.The mixed model was used to calculate the predicted probability of malnutrition in gastric cancer patients, which was divided into high-risk and low-risk groups by median, and the survival analysis showed that the overall survival time of the high-risk group was significantly lower than that of the low-risk group (P=0.005). Conclusion:Deep learning based mixed model may be a potential tool for predicting malnutrition in gastric cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助平常芝麻采纳,获得10
1秒前
所所应助yuanshi采纳,获得10
3秒前
姜忆霜完成签到,获得积分10
6秒前
7秒前
Ahui给Ahui的求助进行了留言
10秒前
10秒前
青年才俊发布了新的文献求助30
10秒前
10秒前
11秒前
11秒前
Asura完成签到,获得积分10
13秒前
浮游应助许会采纳,获得10
13秒前
14秒前
14秒前
yuxiaorou发布了新的文献求助10
14秒前
季1发布了新的文献求助10
15秒前
AN发布了新的文献求助10
15秒前
一年级发布了新的文献求助10
15秒前
Fingerprints完成签到 ,获得积分10
16秒前
16秒前
eureka发布了新的文献求助10
18秒前
19秒前
暴躁的寻云完成签到 ,获得积分0
19秒前
yuanshi发布了新的文献求助10
20秒前
20秒前
20秒前
笨笨念文完成签到 ,获得积分10
20秒前
xxfsx应助时尚凝海采纳,获得10
21秒前
xxfsx应助时尚凝海采纳,获得10
21秒前
21秒前
小黄不熬夜完成签到 ,获得积分10
22秒前
David完成签到,获得积分20
23秒前
昧冒冰发布了新的文献求助10
23秒前
24秒前
开朗的课发布了新的文献求助10
24秒前
sanbai-li发布了新的文献求助10
24秒前
充电宝应助li1_李采纳,获得10
26秒前
zhaozhao完成签到 ,获得积分10
26秒前
26秒前
姜忆霜发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184935
求助须知:如何正确求助?哪些是违规求助? 4370530
关于积分的说明 13610552
捐赠科研通 4222658
什么是DOI,文献DOI怎么找? 2315945
邀请新用户注册赠送积分活动 1314543
关于科研通互助平台的介绍 1263499