亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting malnutrition in gastric cancer patients using computed tomography(CT) deep learning features and clinical data

医学 接收机工作特性 癌症 营养不良 体质指数 放射科 曲线下面积 多元分析 深度学习 核医学 人工智能 内科学 计算机科学
作者
Weijia Huang,Congjun Wang,Ye Wang,Yu Zhu,Shengyu Wang,Jian Yang,Shunzu Lu,Chunyi Zhou,Erlv Wu,Junqiang Chen
出处
期刊:Clinical Nutrition [Elsevier]
卷期号:43 (3): 881-891 被引量:9
标识
DOI:10.1016/j.clnu.2024.02.005
摘要

Objective:The aim of this study is using clinical factors and non-enhanced computed tomography (CT) deep features of the psoas muscles at third lumbar vertebral (L3) level to construct a model to predict malnutrition in gastric cancer before surgery, and to provide a new nutritional status assessment and survival assessment tool for gastric cancer patients. Methods: A retrospective analysis of 312 patients of gastric cancer were divided into malnutrition group and normal group based on Nutrition Risk Screening 2002(NRS-2002).312 regions of interest (ROI) of the psoas muscles at L3 level of non-enhanced CT were delineated.Deep learning (DL) features were extracted from the ROI using a deep migration model and were screened by principal component analysis (PCA) and least-squares operator (LASSO).The clinical predictors included Body Mass Index (BMI), lymphocyte and albumin.Both deep learning model (including deep learning features) and mixed model (including selected deep learning features and selected clinical predictors) were constructed by 11 classifiers.The model was evaluated and selected by calculating receiver operating characteristic (ROC), area under curve (AUC), accuracy, sensitivity and specificity, calibration curve and decision curve analysis (DCA).The Cohen's Kappa coefficient (κ) was using to compare the diagnostic agreement for malnutrition between the mixed model and the GLIM in gastric cancer patients. Result:The results of logistics multivariate analysis showed that BMI [OR=0.569(95% CI 0.491-0.660)],lymphocyte [OR=0.638(95% CI 0.408-0.998)],and albumin [OR=0.924(95% CI 0.859-0.994)]were clinically independent malnutrition of gastric J o u r n a l P r e -p r o o f cancer predictor(P<0.05).Among the 11 classifiers, the Multilayer Perceptron (MLP)were selected as the best classifier.The AUC of the training and test sets for deep learning model were 0.806 (95% CI 0.7485 -0.8635) and 0.769 (95% CI 0.673 -0.863) and with accuracies were 0.734 and 0.766, respectively.The AUC of the training and test sets for the mixed model were 0.909 (95% CI 0.869 -0.948) and 0.857 (95% CI 0.782 -0.931) and with accuracies of 0.845 and 0.861, respectively.The DCA confirmed the clinical benefit of the both models.The Cohen's Kappa coefficient (κ) was 0.647 (P<0.001).Diagnostic agreement for malnutrition between the mixed model and GLIM criteria was good.The mixed model was used to calculate the predicted probability of malnutrition in gastric cancer patients, which was divided into high-risk and low-risk groups by median, and the survival analysis showed that the overall survival time of the high-risk group was significantly lower than that of the low-risk group (P=0.005). Conclusion:Deep learning based mixed model may be a potential tool for predicting malnutrition in gastric cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助jijiguo采纳,获得10
2秒前
甘楽完成签到,获得积分20
9秒前
25_1完成签到,获得积分10
9秒前
10秒前
11秒前
25_1发布了新的文献求助10
16秒前
芳华如梦发布了新的文献求助10
19秒前
Lynn完成签到,获得积分10
23秒前
风行域完成签到,获得积分10
23秒前
HOPKINSON发布了新的文献求助20
24秒前
章鱼完成签到,获得积分10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
赘婿应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
无题完成签到,获得积分10
38秒前
夜夏完成签到,获得积分10
45秒前
摩天轮完成签到 ,获得积分10
45秒前
iShine完成签到 ,获得积分10
48秒前
畅快怀寒完成签到 ,获得积分10
48秒前
49秒前
薛禾发布了新的文献求助10
54秒前
乐乐应助芳华如梦采纳,获得10
58秒前
1分钟前
breeze完成签到,获得积分10
1分钟前
merry6669完成签到 ,获得积分10
1分钟前
王璐璐完成签到,获得积分10
1分钟前
hhhm完成签到 ,获得积分10
1分钟前
ding应助徐甜采纳,获得10
1分钟前
msn00完成签到 ,获得积分10
1分钟前
本本完成签到 ,获得积分10
1分钟前
我真的服了完成签到 ,获得积分10
1分钟前
1分钟前
薛禾完成签到,获得积分20
1分钟前
1分钟前
Amor完成签到,获得积分10
1分钟前
感冒药完成签到 ,获得积分10
1分钟前
nn发布了新的文献求助10
1分钟前
hhh完成签到 ,获得积分10
1分钟前
Criminology34应助大胖采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407659
求助须知:如何正确求助?哪些是违规求助? 4525171
关于积分的说明 14101365
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436551
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604