Predicting malnutrition in gastric cancer patients using computed tomography(CT) deep learning features and clinical data

医学 接收机工作特性 癌症 营养不良 体质指数 放射科 曲线下面积 多元分析 深度学习 核医学 人工智能 内科学 计算机科学
作者
Weijia Huang,Congjun Wang,Ye Wang,Yu Zhu,Shengyu Wang,Jian Yang,Shunzu Lu,Chunyi Zhou,Erlv Wu,Junqiang Chen
出处
期刊:Clinical Nutrition [Elsevier BV]
卷期号:43 (3): 881-891 被引量:9
标识
DOI:10.1016/j.clnu.2024.02.005
摘要

Objective:The aim of this study is using clinical factors and non-enhanced computed tomography (CT) deep features of the psoas muscles at third lumbar vertebral (L3) level to construct a model to predict malnutrition in gastric cancer before surgery, and to provide a new nutritional status assessment and survival assessment tool for gastric cancer patients. Methods: A retrospective analysis of 312 patients of gastric cancer were divided into malnutrition group and normal group based on Nutrition Risk Screening 2002(NRS-2002).312 regions of interest (ROI) of the psoas muscles at L3 level of non-enhanced CT were delineated.Deep learning (DL) features were extracted from the ROI using a deep migration model and were screened by principal component analysis (PCA) and least-squares operator (LASSO).The clinical predictors included Body Mass Index (BMI), lymphocyte and albumin.Both deep learning model (including deep learning features) and mixed model (including selected deep learning features and selected clinical predictors) were constructed by 11 classifiers.The model was evaluated and selected by calculating receiver operating characteristic (ROC), area under curve (AUC), accuracy, sensitivity and specificity, calibration curve and decision curve analysis (DCA).The Cohen's Kappa coefficient (κ) was using to compare the diagnostic agreement for malnutrition between the mixed model and the GLIM in gastric cancer patients. Result:The results of logistics multivariate analysis showed that BMI [OR=0.569(95% CI 0.491-0.660)],lymphocyte [OR=0.638(95% CI 0.408-0.998)],and albumin [OR=0.924(95% CI 0.859-0.994)]were clinically independent malnutrition of gastric J o u r n a l P r e -p r o o f cancer predictor(P<0.05).Among the 11 classifiers, the Multilayer Perceptron (MLP)were selected as the best classifier.The AUC of the training and test sets for deep learning model were 0.806 (95% CI 0.7485 -0.8635) and 0.769 (95% CI 0.673 -0.863) and with accuracies were 0.734 and 0.766, respectively.The AUC of the training and test sets for the mixed model were 0.909 (95% CI 0.869 -0.948) and 0.857 (95% CI 0.782 -0.931) and with accuracies of 0.845 and 0.861, respectively.The DCA confirmed the clinical benefit of the both models.The Cohen's Kappa coefficient (κ) was 0.647 (P<0.001).Diagnostic agreement for malnutrition between the mixed model and GLIM criteria was good.The mixed model was used to calculate the predicted probability of malnutrition in gastric cancer patients, which was divided into high-risk and low-risk groups by median, and the survival analysis showed that the overall survival time of the high-risk group was significantly lower than that of the low-risk group (P=0.005). Conclusion:Deep learning based mixed model may be a potential tool for predicting malnutrition in gastric cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助麦田稻草人采纳,获得10
刚刚
Freya完成签到,获得积分10
1秒前
Miya_han发布了新的文献求助10
1秒前
1秒前
炙热水云完成签到 ,获得积分10
2秒前
混日子呢发布了新的文献求助10
2秒前
寒冷尔蝶完成签到,获得积分10
2秒前
hurb发布了新的文献求助10
2秒前
Orange应助潇洒的绿真采纳,获得10
2秒前
传奇3应助tou采纳,获得10
3秒前
罗奕芳发布了新的文献求助10
3秒前
DDDDD完成签到,获得积分10
3秒前
在水一方应助忧虑的天川采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
蛇從革应助灰灰采纳,获得100
7秒前
xyqnb发布了新的文献求助150
7秒前
8秒前
8秒前
8秒前
9秒前
wwww发布了新的文献求助10
9秒前
9秒前
10秒前
科研通AI2S应助天tian采纳,获得10
10秒前
10秒前
杨静月完成签到,获得积分10
11秒前
扶南完成签到,获得积分10
11秒前
12秒前
12秒前
121231发布了新的文献求助10
13秒前
13秒前
小康完成签到,获得积分10
13秒前
xiaoguai4545发布了新的文献求助10
13秒前
tutu发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604223
求助须知:如何正确求助?哪些是违规求助? 4012672
关于积分的说明 12424560
捐赠科研通 3693322
什么是DOI,文献DOI怎么找? 2036160
邀请新用户注册赠送积分活动 1069258
科研通“疑难数据库(出版商)”最低求助积分说明 953730