Predicting malnutrition in gastric cancer patients using computed tomography(CT) deep learning features and clinical data

医学 接收机工作特性 癌症 营养不良 体质指数 放射科 曲线下面积 多元分析 深度学习 核医学 人工智能 内科学 计算机科学
作者
Weijia Huang,Congjun Wang,Ye Wang,Yu Zhu,Shengyu Wang,Jian Yang,Shunzu Lu,Chunyi Zhou,Erlv Wu,Junqiang Chen
出处
期刊:Clinical Nutrition [Elsevier]
卷期号:43 (3): 881-891 被引量:9
标识
DOI:10.1016/j.clnu.2024.02.005
摘要

Objective:The aim of this study is using clinical factors and non-enhanced computed tomography (CT) deep features of the psoas muscles at third lumbar vertebral (L3) level to construct a model to predict malnutrition in gastric cancer before surgery, and to provide a new nutritional status assessment and survival assessment tool for gastric cancer patients. Methods: A retrospective analysis of 312 patients of gastric cancer were divided into malnutrition group and normal group based on Nutrition Risk Screening 2002(NRS-2002).312 regions of interest (ROI) of the psoas muscles at L3 level of non-enhanced CT were delineated.Deep learning (DL) features were extracted from the ROI using a deep migration model and were screened by principal component analysis (PCA) and least-squares operator (LASSO).The clinical predictors included Body Mass Index (BMI), lymphocyte and albumin.Both deep learning model (including deep learning features) and mixed model (including selected deep learning features and selected clinical predictors) were constructed by 11 classifiers.The model was evaluated and selected by calculating receiver operating characteristic (ROC), area under curve (AUC), accuracy, sensitivity and specificity, calibration curve and decision curve analysis (DCA).The Cohen's Kappa coefficient (κ) was using to compare the diagnostic agreement for malnutrition between the mixed model and the GLIM in gastric cancer patients. Result:The results of logistics multivariate analysis showed that BMI [OR=0.569(95% CI 0.491-0.660)],lymphocyte [OR=0.638(95% CI 0.408-0.998)],and albumin [OR=0.924(95% CI 0.859-0.994)]were clinically independent malnutrition of gastric J o u r n a l P r e -p r o o f cancer predictor(P<0.05).Among the 11 classifiers, the Multilayer Perceptron (MLP)were selected as the best classifier.The AUC of the training and test sets for deep learning model were 0.806 (95% CI 0.7485 -0.8635) and 0.769 (95% CI 0.673 -0.863) and with accuracies were 0.734 and 0.766, respectively.The AUC of the training and test sets for the mixed model were 0.909 (95% CI 0.869 -0.948) and 0.857 (95% CI 0.782 -0.931) and with accuracies of 0.845 and 0.861, respectively.The DCA confirmed the clinical benefit of the both models.The Cohen's Kappa coefficient (κ) was 0.647 (P<0.001).Diagnostic agreement for malnutrition between the mixed model and GLIM criteria was good.The mixed model was used to calculate the predicted probability of malnutrition in gastric cancer patients, which was divided into high-risk and low-risk groups by median, and the survival analysis showed that the overall survival time of the high-risk group was significantly lower than that of the low-risk group (P=0.005). Conclusion:Deep learning based mixed model may be a potential tool for predicting malnutrition in gastric cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文承龙完成签到,获得积分20
2秒前
大军门诊完成签到,获得积分10
3秒前
周周完成签到 ,获得积分10
3秒前
好的昂完成签到,获得积分10
3秒前
罗大壮发布了新的文献求助10
4秒前
xiaoruixue完成签到,获得积分10
4秒前
阿策完成签到,获得积分10
5秒前
虚幻绿兰完成签到,获得积分10
5秒前
ycc完成签到,获得积分10
7秒前
LaffiteElla完成签到,获得积分10
7秒前
gexzygg完成签到,获得积分0
8秒前
孙小懒完成签到,获得积分10
9秒前
10秒前
天明完成签到,获得积分10
10秒前
十字路口完成签到 ,获得积分10
10秒前
峰宝宝完成签到,获得积分10
11秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
11秒前
muzi完成签到,获得积分10
12秒前
李海平完成签到 ,获得积分10
12秒前
ding7862完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
gapper完成签到 ,获得积分10
15秒前
16秒前
lym完成签到,获得积分10
17秒前
ECT完成签到,获得积分10
17秒前
MIST完成签到,获得积分10
17秒前
gexzygg发布了新的文献求助200
17秒前
Maribo完成签到,获得积分10
18秒前
康家旗完成签到,获得积分10
18秒前
QinCaibin完成签到,获得积分10
20秒前
倾听阳光完成签到 ,获得积分10
21秒前
好学的泷泷完成签到 ,获得积分10
24秒前
wweq完成签到,获得积分10
25秒前
xiaxia42完成签到 ,获得积分10
27秒前
逍遥呱呱完成签到 ,获得积分10
27秒前
LLL完成签到,获得积分10
28秒前
yanmh完成签到,获得积分10
29秒前
包容问雁发布了新的文献求助30
29秒前
研友_VZG7GZ应助开心采纳,获得10
30秒前
子辰完成签到,获得积分10
31秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450504
求助须知:如何正确求助?哪些是违规求助? 4558218
关于积分的说明 14265752
捐赠科研通 4481783
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421880