Predicting malnutrition in gastric cancer patients using computed tomography(CT) deep learning features and clinical data

医学 接收机工作特性 癌症 营养不良 体质指数 放射科 曲线下面积 多元分析 深度学习 核医学 人工智能 内科学 计算机科学
作者
Weijia Huang,Congjun Wang,Ye Wang,Yu Zhu,Shengyu Wang,Jian Yang,Shunzu Lu,Chunyi Zhou,Erlv Wu,Junqiang Chen
出处
期刊:Clinical Nutrition [Elsevier BV]
卷期号:43 (3): 881-891 被引量:9
标识
DOI:10.1016/j.clnu.2024.02.005
摘要

Objective:The aim of this study is using clinical factors and non-enhanced computed tomography (CT) deep features of the psoas muscles at third lumbar vertebral (L3) level to construct a model to predict malnutrition in gastric cancer before surgery, and to provide a new nutritional status assessment and survival assessment tool for gastric cancer patients. Methods: A retrospective analysis of 312 patients of gastric cancer were divided into malnutrition group and normal group based on Nutrition Risk Screening 2002(NRS-2002).312 regions of interest (ROI) of the psoas muscles at L3 level of non-enhanced CT were delineated.Deep learning (DL) features were extracted from the ROI using a deep migration model and were screened by principal component analysis (PCA) and least-squares operator (LASSO).The clinical predictors included Body Mass Index (BMI), lymphocyte and albumin.Both deep learning model (including deep learning features) and mixed model (including selected deep learning features and selected clinical predictors) were constructed by 11 classifiers.The model was evaluated and selected by calculating receiver operating characteristic (ROC), area under curve (AUC), accuracy, sensitivity and specificity, calibration curve and decision curve analysis (DCA).The Cohen's Kappa coefficient (κ) was using to compare the diagnostic agreement for malnutrition between the mixed model and the GLIM in gastric cancer patients. Result:The results of logistics multivariate analysis showed that BMI [OR=0.569(95% CI 0.491-0.660)],lymphocyte [OR=0.638(95% CI 0.408-0.998)],and albumin [OR=0.924(95% CI 0.859-0.994)]were clinically independent malnutrition of gastric J o u r n a l P r e -p r o o f cancer predictor(P<0.05).Among the 11 classifiers, the Multilayer Perceptron (MLP)were selected as the best classifier.The AUC of the training and test sets for deep learning model were 0.806 (95% CI 0.7485 -0.8635) and 0.769 (95% CI 0.673 -0.863) and with accuracies were 0.734 and 0.766, respectively.The AUC of the training and test sets for the mixed model were 0.909 (95% CI 0.869 -0.948) and 0.857 (95% CI 0.782 -0.931) and with accuracies of 0.845 and 0.861, respectively.The DCA confirmed the clinical benefit of the both models.The Cohen's Kappa coefficient (κ) was 0.647 (P<0.001).Diagnostic agreement for malnutrition between the mixed model and GLIM criteria was good.The mixed model was used to calculate the predicted probability of malnutrition in gastric cancer patients, which was divided into high-risk and low-risk groups by median, and the survival analysis showed that the overall survival time of the high-risk group was significantly lower than that of the low-risk group (P=0.005). Conclusion:Deep learning based mixed model may be a potential tool for predicting malnutrition in gastric cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
非要起名完成签到 ,获得积分10
刚刚
丘比特应助bulala采纳,获得10
刚刚
1秒前
1秒前
che完成签到,获得积分10
2秒前
54688完成签到,获得积分10
3秒前
4秒前
may发布了新的文献求助10
5秒前
小城故事和冰雨完成签到,获得积分10
5秒前
张雷应助科研进化中采纳,获得10
5秒前
6秒前
yejian完成签到,获得积分10
7秒前
wdccx完成签到,获得积分10
8秒前
希望天下0贩的0应助CHAIZH采纳,获得10
8秒前
llullalla发布了新的文献求助10
10秒前
小鱼儿发布了新的文献求助10
10秒前
10秒前
念姬发布了新的文献求助10
11秒前
斯文败类应助Star-XYX采纳,获得10
13秒前
鹤昀完成签到 ,获得积分10
14秒前
十六发布了新的文献求助10
15秒前
16秒前
上官若男应助胖Q采纳,获得10
17秒前
勤恳长颈鹿完成签到,获得积分10
18秒前
19秒前
19秒前
SYLH应助jzw采纳,获得10
20秒前
bingbing发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
能干宛秋发布了新的文献求助30
24秒前
纪鹏飞完成签到,获得积分10
24秒前
25秒前
瓜兮兮CYY发布了新的文献求助10
25秒前
zzzzzyy发布了新的文献求助10
25秒前
干净的烧鹅完成签到,获得积分10
26秒前
马飞完成签到,获得积分10
28秒前
传奇3应助tanglu采纳,获得10
29秒前
水星逃逸发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420