Research on the strategy for improving the utility of government social media information based on a multi-agent game model

社会化媒体 政府(语言学) 计算机科学 博弈论 知识管理 管理科学 数据科学 万维网 工程类 微观经济学 经济 哲学 语言学
作者
Ying Feng,Shanshan Zhang,Xiaoyang Sun
出处
期刊:Journal of Information Science [SAGE]
被引量:1
标识
DOI:10.1177/01655515231216019
摘要

Government social media (GSM) has become an important tool for government departments to open information, guide public opinion and interact with the government and the people. However, the operation and maintenance of some GSM are not standardised, and the content published is inconsistent with identity positioning, resulting in the realistic dilemma of low utility of GSM information. The purpose of this study is to explore the effective strategies to improve the effectiveness of GSM information. The research is from the perspective of information economics, this article uses evolutionary game theory to build a tripartite evolutionary game model comprising GSM operations departments, government regulators and users in order to explore the evolution process of tripartite game behaviours and the influence of subject behaviour selection on information utility. It subsequently conducts a solution and numerical simulation to demonstrate the influence of different factors on the game results. The experimental results show that there are four situations in which the utility of GSM information affects the evolution and stability strategy of the subject and that changes in different parameter values have significant effects on the results of the three-party game. The evolution trend of the subject behaviour can be changed by increasing the regulatory means of rewards and punishments and establishing an efficient operation mechanism for GSM, thus promoting system convergence to the ideal state. The results of this study can provide references and suggestions for government departments to effectively enhance the effectiveness of GSM information and promote the healthy development of GSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟发布了新的文献求助10
刚刚
2秒前
Akim应助单纯的雅香采纳,获得10
2秒前
3秒前
4秒前
成就的书包完成签到,获得积分10
5秒前
小疙瘩发布了新的文献求助10
5秒前
6秒前
metalmd发布了新的文献求助10
6秒前
6秒前
学术蠕虫发布了新的文献求助10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
sutharsons应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
XShu发布了新的文献求助10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得30
9秒前
传奇3应助科研通管家采纳,获得30
9秒前
Owen应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
文艺明杰发布了新的文献求助100
11秒前
所所应助嘟嘟采纳,获得10
11秒前
13秒前
HMZ完成签到,获得积分10
13秒前
研友_LkYKJZ完成签到,获得积分10
13秒前
田様应助Khr1stINK采纳,获得10
13秒前
13秒前
风趣夜云完成签到,获得积分10
14秒前
14秒前
真实的一鸣完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808