Research on the strategy for improving the utility of government social media information based on a multi-agent game model

社会化媒体 政府(语言学) 计算机科学 博弈论 知识管理 管理科学 数据科学 万维网 工程类 微观经济学 经济 哲学 语言学
作者
Ying Feng,Shanshan Zhang,Xiaoyang Sun
出处
期刊:Journal of Information Science [SAGE]
被引量:1
标识
DOI:10.1177/01655515231216019
摘要

Government social media (GSM) has become an important tool for government departments to open information, guide public opinion and interact with the government and the people. However, the operation and maintenance of some GSM are not standardised, and the content published is inconsistent with identity positioning, resulting in the realistic dilemma of low utility of GSM information. The purpose of this study is to explore the effective strategies to improve the effectiveness of GSM information. The research is from the perspective of information economics, this article uses evolutionary game theory to build a tripartite evolutionary game model comprising GSM operations departments, government regulators and users in order to explore the evolution process of tripartite game behaviours and the influence of subject behaviour selection on information utility. It subsequently conducts a solution and numerical simulation to demonstrate the influence of different factors on the game results. The experimental results show that there are four situations in which the utility of GSM information affects the evolution and stability strategy of the subject and that changes in different parameter values have significant effects on the results of the three-party game. The evolution trend of the subject behaviour can be changed by increasing the regulatory means of rewards and punishments and establishing an efficient operation mechanism for GSM, thus promoting system convergence to the ideal state. The results of this study can provide references and suggestions for government departments to effectively enhance the effectiveness of GSM information and promote the healthy development of GSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友-L.Y发布了新的文献求助10
2秒前
天真富发布了新的文献求助10
2秒前
zhuitushouyue完成签到,获得积分10
3秒前
韵寒发布了新的文献求助10
5秒前
Hedy完成签到,获得积分10
5秒前
5秒前
wang完成签到,获得积分10
6秒前
负责纲完成签到,获得积分10
7秒前
orixero应助中年科研狗采纳,获得10
8秒前
wanci应助haapy采纳,获得10
8秒前
93关闭了93文献求助
8秒前
小鱼同学发布了新的文献求助10
9秒前
10秒前
妍yan发布了新的文献求助10
11秒前
科目三应助qym采纳,获得10
12秒前
12秒前
13秒前
莞尔wr1发布了新的文献求助10
15秒前
大黑眼圈完成签到 ,获得积分10
15秒前
sigrid发布了新的文献求助10
15秒前
16秒前
盐好甜完成签到,获得积分10
16秒前
16秒前
16秒前
熊熊爱发布了新的文献求助10
17秒前
领导范儿应助irisxxxx采纳,获得10
17秒前
19秒前
悲凉的醉柳完成签到 ,获得积分10
19秒前
19秒前
伶俐雅柏发布了新的文献求助10
19秒前
20秒前
研友_LOoomL发布了新的文献求助10
21秒前
21秒前
22秒前
无言完成签到 ,获得积分10
23秒前
23秒前
小广发布了新的文献求助10
24秒前
24秒前
冷艳的友瑶完成签到 ,获得积分10
24秒前
英俊的铭应助陈亮采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125050
求助须知:如何正确求助?哪些是违规求助? 2775348
关于积分的说明 7726300
捐赠科研通 2430919
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600344