Abstract Morphological homogeneity and interfacial traps are essential issues to achieve high‐efficiency and stable large‐area organic solar cells (OSCs). Herein, by the investigation of three quinoxaline‐based acceptors, i.e., PM6:Qx‐1, PM6:Qx‐2, and PM6:Qx‐p‐4Cl, the performance degradation in up‐scaling OSCs is explored. The inhomogeneous morphology in PM6:Qx‐2 induces a nonuniform spatial distribution of charge generation, showing a rapid decline in efficiency and stability in large‐area OSCs. In comparison, the homogeneous morphology in PM6:Qx‐1 and PM6:Qx‐p‐4Cl alleviates the stability drop. When utilizing 2‐phenylethylmercaptan to fill the interfacial traps, the stability drop disappears for PM6:Qx‐1 and PM6:Qx‐p‐4Cl, while it persists for PM6:Qx‐2. The PM6:Qx‐1 large‐are device yields a high efficiency of 13.47% and superior thermal stability (T 80 = 2888 h). Consequently, the interface modification dominates the performance degradation of large‐area devices with homogeneous morphology, while it cannot eliminate the traps in inhomogeneous film. These results provide a clear understanding of degradation mechanisms in upscaling devices.