Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study

电池(电) 计算机科学 机器学习 人工智能 量子力学 物理 功率(物理)
作者
Vahid Safavi,Arash Mohammadi,Najmeh Bazmohammadi,Juan C. Vásquez,Josep M. Guerrero
出处
期刊:Information [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 124-124 被引量:6
标识
DOI:10.3390/info15030124
摘要

Predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is crucial to preventing system failures and enhancing operational performance. Knowing the RUL of a battery enables one to perform preventative maintenance or replace the battery before its useful life expires, which is vital in safety-critical applications. The prediction of the RUL of Li-ion batteries plays a critical role in their optimal utilization throughout their lifetime and supporting sustainable practices. This paper conducts a comparative analysis to assess the effectiveness of multiple machine learning (ML) models in predicting the capacity fade and RUL of Li-ion batteries. Three case studies are analyzed to assess the performances of the state-of-the-art ML models, considering two distinct datasets. These case studies are conducted under various operating conditions such as temperature, C-rate, state of charge (SOC), and depth of discharge (DOD) of the batteries in Cases 1 and 2, and a different set of features and charging policies for the second dataset in Case 3. Meanwhile, diverse extracted features from the initial cycles of the second dataset are considered in Case 3 to predict the RUL of Li-ion batteries in all cycles. In addition, a multi-feature multi-target (MFMT) feature mapping is introduced to investigate the performance of the developed ML models in predicting the battery capacity fade and RUL in the entire life cycle. Multiple ML models that are developed for the comparison analysis in the proposed methodology include Random Forest (RF), extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), multi-layer perceptron (MLP), long short-term memory (LSTM), and attention-LSTM. Furthermore, hyperparameter tuning is applied to improve the performance of the XGBoost and LightGBM models. The results demonstrate that the extreme gradient boosting with hyperparameter tuning (XGBoost-HT) model outperforms the other ML models in terms of the root-mean-squared error (RMSE) and mean absolute percentage error (MAPE) of the battery capacity fade and RUL for all cycles. The obtained RMSE and MAPE values for XGBoost-HT in terms of cycle life are 69 cycles and 6.5%, respectively, for the third case. In addition, the XGBoost-HT model handles the MFMT feature mapping within an acceptable range of RMSE and MAPE, compared to the rest of the developed ML models and similar benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨小刺猬完成签到,获得积分10
1秒前
1秒前
科研小达人完成签到,获得积分10
4秒前
追寻凌青完成签到,获得积分10
6秒前
渡劫完成签到,获得积分10
7秒前
丫丫完成签到 ,获得积分10
7秒前
lxy发布了新的文献求助10
8秒前
bono完成签到 ,获得积分10
11秒前
DentistRui完成签到,获得积分10
11秒前
13秒前
laber应助忧伤的步美采纳,获得50
16秒前
淡淡月饼发布了新的文献求助20
17秒前
茶茶应助虞无声采纳,获得50
17秒前
大橙子发布了新的文献求助10
19秒前
wangnn完成签到,获得积分10
20秒前
xzz完成签到,获得积分10
22秒前
阿绿发布了新的文献求助10
26秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
manman完成签到 ,获得积分20
30秒前
太清完成签到,获得积分10
34秒前
山雀完成签到,获得积分10
36秒前
伊一完成签到,获得积分10
38秒前
哭泣笑柳发布了新的文献求助10
44秒前
琳琅发布了新的文献求助10
49秒前
xue完成签到 ,获得积分10
50秒前
liars完成签到 ,获得积分10
50秒前
搞怪人雄完成签到,获得积分10
53秒前
落后的夜阑完成签到,获得积分10
53秒前
大橙子发布了新的文献求助10
56秒前
彪行天下完成签到,获得积分10
1分钟前
danli完成签到 ,获得积分10
1分钟前
guangyu完成签到,获得积分10
1分钟前
学术老6完成签到,获得积分10
1分钟前
c123完成签到 ,获得积分10
1分钟前
恐怖稽器人完成签到,获得积分10
1分钟前
WXR完成签到,获得积分10
1分钟前
科研小白完成签到,获得积分10
1分钟前
1分钟前
可爱丸子完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022