Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study

电池(电) 淡出 Boosting(机器学习) 随机森林 梯度升压 电池容量 计算机科学 特征(语言学) 荷电状态 可靠性工程 锂离子电池 机器学习 健康状况 人工智能 汽车工程 工程类 功率(物理) 哲学 物理 操作系统 量子力学 语言学
作者
Vahid Safavi,Arash Mohammadi Vaniar,Najmeh Bazmohammadi,Juan C. Vásquez,Josep M. Guerrero
出处
期刊:Information [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 124-124 被引量:22
标识
DOI:10.3390/info15030124
摘要

Predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is crucial to preventing system failures and enhancing operational performance. Knowing the RUL of a battery enables one to perform preventative maintenance or replace the battery before its useful life expires, which is vital in safety-critical applications. The prediction of the RUL of Li-ion batteries plays a critical role in their optimal utilization throughout their lifetime and supporting sustainable practices. This paper conducts a comparative analysis to assess the effectiveness of multiple machine learning (ML) models in predicting the capacity fade and RUL of Li-ion batteries. Three case studies are analyzed to assess the performances of the state-of-the-art ML models, considering two distinct datasets. These case studies are conducted under various operating conditions such as temperature, C-rate, state of charge (SOC), and depth of discharge (DOD) of the batteries in Cases 1 and 2, and a different set of features and charging policies for the second dataset in Case 3. Meanwhile, diverse extracted features from the initial cycles of the second dataset are considered in Case 3 to predict the RUL of Li-ion batteries in all cycles. In addition, a multi-feature multi-target (MFMT) feature mapping is introduced to investigate the performance of the developed ML models in predicting the battery capacity fade and RUL in the entire life cycle. Multiple ML models that are developed for the comparison analysis in the proposed methodology include Random Forest (RF), extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), multi-layer perceptron (MLP), long short-term memory (LSTM), and attention-LSTM. Furthermore, hyperparameter tuning is applied to improve the performance of the XGBoost and LightGBM models. The results demonstrate that the extreme gradient boosting with hyperparameter tuning (XGBoost-HT) model outperforms the other ML models in terms of the root-mean-squared error (RMSE) and mean absolute percentage error (MAPE) of the battery capacity fade and RUL for all cycles. The obtained RMSE and MAPE values for XGBoost-HT in terms of cycle life are 69 cycles and 6.5%, respectively, for the third case. In addition, the XGBoost-HT model handles the MFMT feature mapping within an acceptable range of RMSE and MAPE, compared to the rest of the developed ML models and similar benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晨曦完成签到 ,获得积分10
刚刚
刚刚
Kiki发布了新的文献求助10
刚刚
加缪完成签到,获得积分0
1秒前
1秒前
丘比特应助小李呀采纳,获得10
1秒前
1秒前
1秒前
崔崔崔发布了新的文献求助10
1秒前
Ryan完成签到,获得积分10
1秒前
赫幼蓉发布了新的文献求助10
2秒前
默默发布了新的文献求助10
2秒前
JamesPei应助懵懂的映菱采纳,获得10
2秒前
科研通AI5应助吕万鹏采纳,获得10
3秒前
aa完成签到,获得积分10
3秒前
彭于晏应助WL采纳,获得20
4秒前
迷路灵槐发布了新的文献求助10
5秒前
yangdann发布了新的文献求助10
6秒前
DVD完成签到 ,获得积分10
7秒前
刘洋完成签到,获得积分10
7秒前
小张呢好完成签到 ,获得积分10
10秒前
13秒前
13秒前
脑洞疼应助曹骏轩采纳,获得10
14秒前
meng发布了新的文献求助10
14秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
懵懂的映菱完成签到,获得积分10
15秒前
15秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
Maston应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
15秒前
ding应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
Lucas应助容止采纳,获得10
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652