Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study

电池(电) 计算机科学 机器学习 人工智能 功率(物理) 量子力学 物理
作者
Vahid Safavi,Arash Mohammadi,Najmeh Bazmohammadi,Juan C. Vásquez,Josep M. Guerrero
出处
期刊:Information [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 124-124 被引量:6
标识
DOI:10.3390/info15030124
摘要

Predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is crucial to preventing system failures and enhancing operational performance. Knowing the RUL of a battery enables one to perform preventative maintenance or replace the battery before its useful life expires, which is vital in safety-critical applications. The prediction of the RUL of Li-ion batteries plays a critical role in their optimal utilization throughout their lifetime and supporting sustainable practices. This paper conducts a comparative analysis to assess the effectiveness of multiple machine learning (ML) models in predicting the capacity fade and RUL of Li-ion batteries. Three case studies are analyzed to assess the performances of the state-of-the-art ML models, considering two distinct datasets. These case studies are conducted under various operating conditions such as temperature, C-rate, state of charge (SOC), and depth of discharge (DOD) of the batteries in Cases 1 and 2, and a different set of features and charging policies for the second dataset in Case 3. Meanwhile, diverse extracted features from the initial cycles of the second dataset are considered in Case 3 to predict the RUL of Li-ion batteries in all cycles. In addition, a multi-feature multi-target (MFMT) feature mapping is introduced to investigate the performance of the developed ML models in predicting the battery capacity fade and RUL in the entire life cycle. Multiple ML models that are developed for the comparison analysis in the proposed methodology include Random Forest (RF), extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), multi-layer perceptron (MLP), long short-term memory (LSTM), and attention-LSTM. Furthermore, hyperparameter tuning is applied to improve the performance of the XGBoost and LightGBM models. The results demonstrate that the extreme gradient boosting with hyperparameter tuning (XGBoost-HT) model outperforms the other ML models in terms of the root-mean-squared error (RMSE) and mean absolute percentage error (MAPE) of the battery capacity fade and RUL for all cycles. The obtained RMSE and MAPE values for XGBoost-HT in terms of cycle life are 69 cycles and 6.5%, respectively, for the third case. In addition, the XGBoost-HT model handles the MFMT feature mapping within an acceptable range of RMSE and MAPE, compared to the rest of the developed ML models and similar benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
练习时长两年半应助飞鱼采纳,获得20
4秒前
Honor完成签到 ,获得积分10
4秒前
吴祥坤完成签到,获得积分10
7秒前
yxl完成签到,获得积分10
7秒前
俭朴咖啡完成签到 ,获得积分10
8秒前
9秒前
紫罗风韵完成签到,获得积分10
9秒前
CC完成签到,获得积分10
9秒前
10秒前
三石呦423发布了新的文献求助10
11秒前
11秒前
阿州关注了科研通微信公众号
12秒前
昱珂发布了新的文献求助10
12秒前
17完成签到,获得积分10
12秒前
紫薇的舔狗完成签到,获得积分10
14秒前
15秒前
吱吱发布了新的文献求助10
15秒前
16秒前
小马甲应助科研欣路采纳,获得10
17秒前
翁雁丝发布了新的文献求助10
17秒前
19秒前
19秒前
佳子发布了新的文献求助10
20秒前
缓慢咖啡完成签到,获得积分10
21秒前
热心念瑶发布了新的文献求助30
21秒前
可爱的函函应助安好采纳,获得10
22秒前
22秒前
23秒前
23秒前
23秒前
佳子完成签到,获得积分20
25秒前
SYLH应助友好的寒云采纳,获得20
25秒前
科研通AI5应助吱吱采纳,获得10
26秒前
26秒前
26秒前
123发布了新的文献求助10
26秒前
26秒前
cherlie应助屿若采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975661
求助须知:如何正确求助?哪些是违规求助? 3520000
关于积分的说明 11200535
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390