清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study

电池(电) 淡出 Boosting(机器学习) 随机森林 梯度升压 电池容量 计算机科学 特征(语言学) 荷电状态 可靠性工程 锂离子电池 机器学习 健康状况 人工智能 汽车工程 工程类 物理 量子力学 功率(物理) 语言学 哲学 操作系统
作者
Vahid Safavi,Arash Mohammadi Vaniar,Najmeh Bazmohammadi,Juan C. Vásquez,Josep M. Guerrero
出处
期刊:Information [MDPI AG]
卷期号:15 (3): 124-124 被引量:22
标识
DOI:10.3390/info15030124
摘要

Predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is crucial to preventing system failures and enhancing operational performance. Knowing the RUL of a battery enables one to perform preventative maintenance or replace the battery before its useful life expires, which is vital in safety-critical applications. The prediction of the RUL of Li-ion batteries plays a critical role in their optimal utilization throughout their lifetime and supporting sustainable practices. This paper conducts a comparative analysis to assess the effectiveness of multiple machine learning (ML) models in predicting the capacity fade and RUL of Li-ion batteries. Three case studies are analyzed to assess the performances of the state-of-the-art ML models, considering two distinct datasets. These case studies are conducted under various operating conditions such as temperature, C-rate, state of charge (SOC), and depth of discharge (DOD) of the batteries in Cases 1 and 2, and a different set of features and charging policies for the second dataset in Case 3. Meanwhile, diverse extracted features from the initial cycles of the second dataset are considered in Case 3 to predict the RUL of Li-ion batteries in all cycles. In addition, a multi-feature multi-target (MFMT) feature mapping is introduced to investigate the performance of the developed ML models in predicting the battery capacity fade and RUL in the entire life cycle. Multiple ML models that are developed for the comparison analysis in the proposed methodology include Random Forest (RF), extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), multi-layer perceptron (MLP), long short-term memory (LSTM), and attention-LSTM. Furthermore, hyperparameter tuning is applied to improve the performance of the XGBoost and LightGBM models. The results demonstrate that the extreme gradient boosting with hyperparameter tuning (XGBoost-HT) model outperforms the other ML models in terms of the root-mean-squared error (RMSE) and mean absolute percentage error (MAPE) of the battery capacity fade and RUL for all cycles. The obtained RMSE and MAPE values for XGBoost-HT in terms of cycle life are 69 cycles and 6.5%, respectively, for the third case. In addition, the XGBoost-HT model handles the MFMT feature mapping within an acceptable range of RMSE and MAPE, compared to the rest of the developed ML models and similar benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的三问完成签到 ,获得积分10
3秒前
2025晨晨完成签到 ,获得积分10
6秒前
whuhustwit完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
虞无声完成签到,获得积分10
14秒前
美丽的芙完成签到 ,获得积分10
15秒前
27秒前
英姑应助勇往直前采纳,获得10
27秒前
无私雅柏完成签到 ,获得积分10
28秒前
生动冰海完成签到 ,获得积分10
29秒前
zoey发布了新的文献求助10
32秒前
bo完成签到 ,获得积分10
35秒前
40秒前
李健的粉丝团团长应助Msc采纳,获得10
41秒前
落霞与孤鹜齐飞完成签到,获得积分10
44秒前
勇往直前发布了新的文献求助10
46秒前
万能图书馆应助zoey采纳,获得10
50秒前
51秒前
Msc发布了新的文献求助10
57秒前
左丘映易完成签到,获得积分0
1分钟前
naczx完成签到,获得积分0
1分钟前
yzhilson完成签到 ,获得积分0
1分钟前
LiangRen完成签到 ,获得积分10
1分钟前
1分钟前
zoey发布了新的文献求助10
1分钟前
zoey完成签到,获得积分10
2分钟前
zzz111发布了新的文献求助10
2分钟前
2分钟前
wayne完成签到 ,获得积分10
2分钟前
久晓完成签到 ,获得积分10
3分钟前
3分钟前
widesky777完成签到 ,获得积分0
3分钟前
Lanyiyang发布了新的文献求助10
3分钟前
MS903完成签到 ,获得积分10
3分钟前
周全完成签到 ,获得积分10
3分钟前
燕儿完成签到 ,获得积分10
3分钟前
liliAnh完成签到 ,获得积分10
3分钟前
Hilda007应助Lanyiyang采纳,获得10
3分钟前
科研通AI6应助leapper采纳,获得10
3分钟前
crystaler完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438737
求助须知:如何正确求助?哪些是违规求助? 4549828
关于积分的说明 14221075
捐赠科研通 4470805
什么是DOI,文献DOI怎么找? 2450023
邀请新用户注册赠送积分活动 1440973
关于科研通互助平台的介绍 1417484