Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study

电池(电) 计算机科学 机器学习 人工智能 量子力学 物理 功率(物理)
作者
Vahid Safavi,Arash Mohammadi,Najmeh Bazmohammadi,Juan C. Vásquez,Josep M. Guerrero
出处
期刊:Information [MDPI AG]
卷期号:15 (3): 124-124 被引量:6
标识
DOI:10.3390/info15030124
摘要

Predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is crucial to preventing system failures and enhancing operational performance. Knowing the RUL of a battery enables one to perform preventative maintenance or replace the battery before its useful life expires, which is vital in safety-critical applications. The prediction of the RUL of Li-ion batteries plays a critical role in their optimal utilization throughout their lifetime and supporting sustainable practices. This paper conducts a comparative analysis to assess the effectiveness of multiple machine learning (ML) models in predicting the capacity fade and RUL of Li-ion batteries. Three case studies are analyzed to assess the performances of the state-of-the-art ML models, considering two distinct datasets. These case studies are conducted under various operating conditions such as temperature, C-rate, state of charge (SOC), and depth of discharge (DOD) of the batteries in Cases 1 and 2, and a different set of features and charging policies for the second dataset in Case 3. Meanwhile, diverse extracted features from the initial cycles of the second dataset are considered in Case 3 to predict the RUL of Li-ion batteries in all cycles. In addition, a multi-feature multi-target (MFMT) feature mapping is introduced to investigate the performance of the developed ML models in predicting the battery capacity fade and RUL in the entire life cycle. Multiple ML models that are developed for the comparison analysis in the proposed methodology include Random Forest (RF), extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), multi-layer perceptron (MLP), long short-term memory (LSTM), and attention-LSTM. Furthermore, hyperparameter tuning is applied to improve the performance of the XGBoost and LightGBM models. The results demonstrate that the extreme gradient boosting with hyperparameter tuning (XGBoost-HT) model outperforms the other ML models in terms of the root-mean-squared error (RMSE) and mean absolute percentage error (MAPE) of the battery capacity fade and RUL for all cycles. The obtained RMSE and MAPE values for XGBoost-HT in terms of cycle life are 69 cycles and 6.5%, respectively, for the third case. In addition, the XGBoost-HT model handles the MFMT feature mapping within an acceptable range of RMSE and MAPE, compared to the rest of the developed ML models and similar benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房谷槐完成签到,获得积分10
1秒前
马家辉完成签到,获得积分10
2秒前
给我个二硫碘化钾完成签到,获得积分10
3秒前
3秒前
小冉关注了科研通微信公众号
6秒前
可爱的函函应助miles采纳,获得10
7秒前
悬剑完成签到,获得积分10
7秒前
8秒前
Hello应助阳光易真采纳,获得10
9秒前
Ava应助清风明月采纳,获得10
9秒前
10秒前
11秒前
完美世界应助泥花采纳,获得10
11秒前
桃夭发布了新的文献求助10
12秒前
香蕉觅云应助明理采珊采纳,获得10
13秒前
13秒前
15秒前
devilfish13完成签到,获得积分20
17秒前
17秒前
18秒前
巨小俊完成签到,获得积分10
19秒前
毛豆应助鳗鱼凡波采纳,获得10
19秒前
abner完成签到,获得积分10
20秒前
22Xsusu发布了新的文献求助10
21秒前
22秒前
小冉发布了新的文献求助10
22秒前
大模型应助Magician采纳,获得10
23秒前
devilfish13发布了新的文献求助10
23秒前
Lucas应助菠萝啤采纳,获得10
24秒前
情怀应助诚心的水杯采纳,获得10
25秒前
25秒前
26秒前
27秒前
Alkaid发布了新的文献求助30
28秒前
F冯发布了新的文献求助10
28秒前
29秒前
阳光易真完成签到,获得积分20
29秒前
烟花应助美丽仙人掌采纳,获得20
29秒前
30秒前
顾矜应助22Xsusu采纳,获得30
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309946
求助须知:如何正确求助?哪些是违规求助? 2943074
关于积分的说明 8512532
捐赠科研通 2618172
什么是DOI,文献DOI怎么找? 1430892
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490