Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study

电池(电) 计算机科学 机器学习 人工智能 量子力学 物理 功率(物理)
作者
Vahid Safavi,Arash Mohammadi,Najmeh Bazmohammadi,Juan C. Vásquez,Josep M. Guerrero
出处
期刊:Information [MDPI AG]
卷期号:15 (3): 124-124 被引量:6
标识
DOI:10.3390/info15030124
摘要

Predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is crucial to preventing system failures and enhancing operational performance. Knowing the RUL of a battery enables one to perform preventative maintenance or replace the battery before its useful life expires, which is vital in safety-critical applications. The prediction of the RUL of Li-ion batteries plays a critical role in their optimal utilization throughout their lifetime and supporting sustainable practices. This paper conducts a comparative analysis to assess the effectiveness of multiple machine learning (ML) models in predicting the capacity fade and RUL of Li-ion batteries. Three case studies are analyzed to assess the performances of the state-of-the-art ML models, considering two distinct datasets. These case studies are conducted under various operating conditions such as temperature, C-rate, state of charge (SOC), and depth of discharge (DOD) of the batteries in Cases 1 and 2, and a different set of features and charging policies for the second dataset in Case 3. Meanwhile, diverse extracted features from the initial cycles of the second dataset are considered in Case 3 to predict the RUL of Li-ion batteries in all cycles. In addition, a multi-feature multi-target (MFMT) feature mapping is introduced to investigate the performance of the developed ML models in predicting the battery capacity fade and RUL in the entire life cycle. Multiple ML models that are developed for the comparison analysis in the proposed methodology include Random Forest (RF), extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), multi-layer perceptron (MLP), long short-term memory (LSTM), and attention-LSTM. Furthermore, hyperparameter tuning is applied to improve the performance of the XGBoost and LightGBM models. The results demonstrate that the extreme gradient boosting with hyperparameter tuning (XGBoost-HT) model outperforms the other ML models in terms of the root-mean-squared error (RMSE) and mean absolute percentage error (MAPE) of the battery capacity fade and RUL for all cycles. The obtained RMSE and MAPE values for XGBoost-HT in terms of cycle life are 69 cycles and 6.5%, respectively, for the third case. In addition, the XGBoost-HT model handles the MFMT feature mapping within an acceptable range of RMSE and MAPE, compared to the rest of the developed ML models and similar benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壹拾柒完成签到,获得积分10
1秒前
1秒前
1秒前
mimi发布了新的文献求助10
1秒前
呆呆完成签到,获得积分10
2秒前
blebui应助姜茶采纳,获得10
2秒前
幼稚园小新完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
3秒前
snowball完成签到,获得积分10
3秒前
4秒前
duoduozs发布了新的文献求助10
4秒前
velpro完成签到,获得积分10
4秒前
qqqq完成签到,获得积分10
4秒前
5秒前
5秒前
溪风完成签到,获得积分10
5秒前
ting发布了新的文献求助10
6秒前
7秒前
Xxxnnian发布了新的文献求助30
7秒前
听风暖完成签到 ,获得积分10
8秒前
li发布了新的文献求助10
8秒前
赘婿应助伊布采纳,获得10
8秒前
gaga完成签到,获得积分10
8秒前
小蘑菇应助reck采纳,获得10
9秒前
清风荷影完成签到 ,获得积分10
9秒前
酷波er应助动如脱兔采纳,获得10
10秒前
10秒前
10秒前
10秒前
11秒前
圈圈发布了新的文献求助10
11秒前
易达发布了新的文献求助10
11秒前
追梦人完成签到,获得积分10
11秒前
11秒前
实验室扛把子完成签到,获得积分10
11秒前
在水一方应助清爽忆山采纳,获得10
12秒前
小马甲应助日月山河永在采纳,获得10
12秒前
娃娃发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672