Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study

电池(电) 计算机科学 机器学习 人工智能 量子力学 物理 功率(物理)
作者
Vahid Safavi,Arash Mohammadi,Najmeh Bazmohammadi,Juan C. Vásquez,Josep M. Guerrero
出处
期刊:Information [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 124-124 被引量:6
标识
DOI:10.3390/info15030124
摘要

Predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is crucial to preventing system failures and enhancing operational performance. Knowing the RUL of a battery enables one to perform preventative maintenance or replace the battery before its useful life expires, which is vital in safety-critical applications. The prediction of the RUL of Li-ion batteries plays a critical role in their optimal utilization throughout their lifetime and supporting sustainable practices. This paper conducts a comparative analysis to assess the effectiveness of multiple machine learning (ML) models in predicting the capacity fade and RUL of Li-ion batteries. Three case studies are analyzed to assess the performances of the state-of-the-art ML models, considering two distinct datasets. These case studies are conducted under various operating conditions such as temperature, C-rate, state of charge (SOC), and depth of discharge (DOD) of the batteries in Cases 1 and 2, and a different set of features and charging policies for the second dataset in Case 3. Meanwhile, diverse extracted features from the initial cycles of the second dataset are considered in Case 3 to predict the RUL of Li-ion batteries in all cycles. In addition, a multi-feature multi-target (MFMT) feature mapping is introduced to investigate the performance of the developed ML models in predicting the battery capacity fade and RUL in the entire life cycle. Multiple ML models that are developed for the comparison analysis in the proposed methodology include Random Forest (RF), extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), multi-layer perceptron (MLP), long short-term memory (LSTM), and attention-LSTM. Furthermore, hyperparameter tuning is applied to improve the performance of the XGBoost and LightGBM models. The results demonstrate that the extreme gradient boosting with hyperparameter tuning (XGBoost-HT) model outperforms the other ML models in terms of the root-mean-squared error (RMSE) and mean absolute percentage error (MAPE) of the battery capacity fade and RUL for all cycles. The obtained RMSE and MAPE values for XGBoost-HT in terms of cycle life are 69 cycles and 6.5%, respectively, for the third case. In addition, the XGBoost-HT model handles the MFMT feature mapping within an acceptable range of RMSE and MAPE, compared to the rest of the developed ML models and similar benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的美女完成签到,获得积分10
1秒前
JamesPei应助浮生若梦采纳,获得20
1秒前
1秒前
WLWLW给一日清晨的求助进行了留言
1秒前
彭于晏应助cc采纳,获得10
2秒前
9527King完成签到,获得积分10
2秒前
aaatan发布了新的文献求助10
2秒前
有魅力的盼旋完成签到 ,获得积分10
3秒前
璐璐发布了新的文献求助20
4秒前
FashionBoy应助自觉的千凝采纳,获得10
4秒前
GH完成签到,获得积分10
5秒前
5秒前
Akim应助zp12345采纳,获得10
5秒前
5秒前
陈冲发布了新的文献求助10
5秒前
xmz应助动听服饰采纳,获得10
6秒前
6秒前
风控发布了新的文献求助10
7秒前
小蘑菇应助一年5篇采纳,获得10
8秒前
ZJPPPP应助123456789采纳,获得10
9秒前
博弈春秋完成签到,获得积分10
9秒前
肖兔兔完成签到,获得积分10
9秒前
Mr鹿发布了新的文献求助10
9秒前
10秒前
yyy完成签到,获得积分10
10秒前
皛鱼完成签到,获得积分10
10秒前
脆脆薯饼完成签到,获得积分10
11秒前
充电宝应助只要平凡采纳,获得10
11秒前
11秒前
陈冲完成签到,获得积分10
11秒前
小田田完成签到 ,获得积分10
11秒前
mof发布了新的文献求助10
11秒前
充电宝应助wyp采纳,获得10
11秒前
无花果应助如沐春风采纳,获得10
11秒前
小二郎应助cc采纳,获得10
11秒前
无限果汁发布了新的文献求助10
12秒前
12秒前
Auroar完成签到 ,获得积分10
13秒前
13秒前
852应助xiaobei采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794