材料科学
微观结构
电解质
枝晶(数学)
氧化物
粒度
烧结
晶界
锂(药物)
锆
金属
化学工程
冶金
复合材料
物理化学
电极
几何学
数学
工程类
化学
医学
内分泌学
作者
Vikalp Raj,Kaustubh G. Naik,Bairav S. Vishnugopi,Ajeet Kumar Rana,Andrew Manning,Smruti Rekha Mahapatra,K. Maruthi Varun,Vipin Singh,Abhineet Nigam,Josefine McBrayer,Partha P. Mukherjee,Naga Phani B. Aetukuri,David Mitlin
标识
DOI:10.1002/aenm.202303062
摘要
Abstract This study illustrates how the microstructure of garnet solid‐state electrolytes (SSE) affects the stress‐state and dendrite growth. Tantalum‐doped lithium lanthanum zirconium oxide (LLZTO, Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 ) is synthesized by powder processing and sintering (AS), or with the incorporation of intermediate‐stage high‐energy milling (M). The M compact displays higher density (91.5% vs 82.5% of theoretical), and per quantitative stereology, lower average grain size (5.4 ± 2.6 vs 21.3 ± 11.1 µm) and lower AFM‐derived RMS surface roughness contacting the Li metal (45 vs 161 nm). These differences enable symmetric M cells to electrochemically cycle at constant capacity (0.1 mAh cm −2 ) with enhanced critical current density (CCD) of 1.4 versus 0.3 mA cm −2 . It is demonstrated that LLZTO grain size distribution and internal porosity critically affect electrical short‐circuit failure, indicating the importance of electronic properties. Lithium dendrites propagate intergranularly through regions where LLZTO grains are smaller than the bulk average (7.4 ± 3.8 µm for AS in a symmetric cell, 3.1 ± 1.4 µm for M in a half‐cell). Metal also accumulates in the otherwise empty pores of the sintered compact present along the dendrite path. Mechanistic modeling indicates that reaction and stress heterogeneities are interrelated, leading to current focusing and preferential plating at grain boundaries.
科研通智能强力驱动
Strongly Powered by AbleSci AI