Foraging flight-based health indicators for honey bee colonies using automatic monitoring systems

觅食 蜂巢 蜜蜂 养蜂 养蜂女孩 生物 瓦罗亚 生态学
作者
Joe‐Air Jiang,Jen-Cheng Wang,Chien-Peng Huang,Mu-Hwa Lee,An-Chi Liu,Hung‐Jen Lin,Chien-Hao Wang,Cheng‐Ying Chou,En‐Cheng Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108476-108476 被引量:1
标识
DOI:10.1016/j.compag.2023.108476
摘要

Honey bees play an extremely important role in agricultural industries. To prevent bee colonies from collapsing, it is critical to acquire real-time health information regarding bee populations. This study developed foraging flight-based indicators, including the daily incoming and outgoing flight frequencies of forager bees and the consistency of the pattern of daily routine of forager bees, to determine the health status of a honey bee colony. The frequencies of forager bees’ entering and leaving their beehive was calculated using the monitoring data obtained from an automatic bee monitoring system. The consistency of the pattern of daily routine of forager bees was represented by the residual rate of outgoing and incoming activities of the bees. A three-week experiment was conducted to investigate the performances of four mite (Varroa jacobsoni Oudemans) treatments after the colonies were infected by the mites, and the performances of the treatments were used to determine the health of the colonies. A variety of indicators, the proposed foraging flight-based indicators included, were adopted to evaluate the performances of the treatments. The autocorrelation and cross-correlation analysis results showed that without invading bee colonies the proposed foraging flight-based indicators were as effective as other indicators in determining the health of honey bee colonies. Thus, the proposed indicators could serve an effective and convenient tool for beekeepers to manage their beehives. Combining with the bee monitoring system capable of automatically collecting data of incoming and outgoing frequencies of forager bees, the health management of bee farms can be greatly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助含糊采纳,获得10
1秒前
李健应助Murphy_12采纳,获得10
1秒前
1秒前
Jasper应助科研顺利采纳,获得10
2秒前
Ava应助小mol仙采纳,获得10
2秒前
科研完成签到,获得积分10
2秒前
tanrui完成签到,获得积分10
3秒前
存在发布了新的文献求助30
3秒前
李健的小迷弟应助Manyiu采纳,获得10
4秒前
包子牛奶发布了新的文献求助10
4秒前
4秒前
汉堡包应助Chocolate采纳,获得10
5秒前
嘤嘤怪应助Libra采纳,获得10
5秒前
车干发布了新的文献求助10
5秒前
qq应助Akasazi采纳,获得10
6秒前
shang完成签到 ,获得积分20
6秒前
6秒前
7秒前
7秒前
盛清让完成签到,获得积分10
7秒前
时567完成签到,获得积分10
7秒前
SciGPT应助知行采纳,获得10
8秒前
8秒前
orixero应助努力科研霸王龙采纳,获得10
8秒前
songxinzhe完成签到,获得积分10
8秒前
yatou发布了新的文献求助20
8秒前
8秒前
chenxin7271发布了新的文献求助10
9秒前
共享精神应助tulips采纳,获得10
10秒前
10秒前
10秒前
10秒前
12秒前
Nancy发布了新的文献求助30
12秒前
12秒前
含糊发布了新的文献求助10
12秒前
Murphy_12完成签到,获得积分10
13秒前
13秒前
袁大头发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528365
求助须知:如何正确求助?哪些是违规求助? 3108695
关于积分的说明 9289878
捐赠科研通 2806282
什么是DOI,文献DOI怎么找? 1540447
邀请新用户注册赠送积分活动 717115
科研通“疑难数据库(出版商)”最低求助积分说明 709937