A novel optimization approach for bio-design of therapeutic compression stockings with pressure fit

压缩(物理) 计算机科学 压力袜 圆柱 工程设计过程 生物医学工程 数学 机械工程 医学 材料科学 外科 工程类 血栓形成 复合材料
作者
Yu Shi,Chongyang Ye,Rong Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107768-107768 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107768
摘要

For physical-based compression therapeutic modalities, especially compression stockings (CSs), their pressure performances are necessarily evaluated by the standardized cylinder leg mannequins before biological applications. However, the insufficient pressure supply caused by morphological shape diversities between circular leg mannequins and irregular bio-bodies limits the clinical effectiveness and user compliance of CSs. Therefore, an operable and efficiency approach for optimization bio-design and digital development of CSs with enhanced compression performances needs to be proposed. The present study has adopted three-dimensional (3D) body scanning and reverse engineering technologies for lower limb cross-sectional geometric characterization and morphological classification. The irregularity of biological leg circumferential slices was determined and clustered as four levels relating to individual curvature variations. Sequentially, a new pressure prediction model was constructed through characterized geometric variations for bio-based bodies, then its acceptability was validated with good agreement by wearing trials (mean prediction accuracy was 2.53 ± 0.52 mmHg). Thus, the digital pressure reshaped development guidance was obtained based on the classified irregular levels and established pressure prediction models. Consequently, this study provides a novel reliable optimization bio-design solution for manufacturing of therapeutic compression textiles and facilitates the medical efficacy and precision of compression therapy in practical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shelly0621发布了新的文献求助10
刚刚
中华有为发布了新的文献求助10
刚刚
特兰克斯发布了新的文献求助10
刚刚
Ares完成签到,获得积分10
1秒前
1秒前
在水一方应助garyaa采纳,获得10
1秒前
DAN_完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助屹舟采纳,获得10
2秒前
科研通AI5应助一一采纳,获得10
3秒前
隐形的紫菜完成签到,获得积分10
3秒前
23132发布了新的文献求助10
4秒前
cora完成签到,获得积分10
5秒前
放眼天下完成签到 ,获得积分10
6秒前
文毛完成签到,获得积分10
6秒前
6秒前
7秒前
兴奋的问旋完成签到,获得积分10
7秒前
张张完成签到,获得积分10
7秒前
陈文学完成签到,获得积分10
8秒前
一一发布了新的文献求助10
8秒前
bkagyin应助潇洒的冷玉采纳,获得10
9秒前
通~发布了新的文献求助10
9秒前
9秒前
芒果完成签到,获得积分10
9秒前
10秒前
cly3397完成签到,获得积分10
10秒前
开心发布了新的文献求助10
10秒前
10秒前
少年发布了新的文献求助10
11秒前
天天快乐应助阿毛采纳,获得10
11秒前
Jenny应助狂野的以珊采纳,获得10
11秒前
12秒前
12秒前
13秒前
14秒前
研友_LMNjkn发布了新的文献求助10
14秒前
ding应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
yizhiGao应助科研通管家采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794