亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Fault Diagnosis Method for 5G Cellular Networks Based on Knowledge and Data Fusion

可解释性 计算机科学 领域知识 数据挖掘 贝叶斯网络 人工智能 数据集 机器学习 断层(地质) 人工神经网络 地质学 地震学
作者
Lingyu Zhao,Chuhong He,Xiaorong Zhu
出处
期刊:Sensors [MDPI AG]
卷期号:24 (2): 401-401 被引量:2
标识
DOI:10.3390/s24020401
摘要

As 5G networks become more complex and heterogeneous, the difficulty of network operation and maintenance forces mobile operators to find new strategies to stay competitive. However, most existing network fault diagnosis methods rely on manual testing and time stacking, which suffer from long optimization cycles and high resource consumption. Therefore, we herein propose a knowledge- and data-fusion-based fault diagnosis algorithm for 5G cellular networks from the perspective of big data and artificial intelligence. The algorithm uses a generative adversarial network (GAN) to expand the data set collected from real network scenarios to balance the number of samples under different network fault categories. In the process of fault diagnosis, a naive Bayesian model (NBM) combined with domain expert knowledge is firstly used to pre-diagnose the expanded data set and generate a topological association graph between the data with solid engineering significance and interpretability. Then, as the pre-diagnostic prior knowledge, the topological association graph is fed into the graph convolutional neural network (GCN) model simultaneously with the training data set for model training. We use a data set collected by Minimization of Drive Tests under real network scenarios in Lu'an City, Anhui Province, in August 2019. The simulation results demonstrate that the algorithm outperforms other traditional models in fault detection and diagnosis tasks, achieving an accuracy of 90.56% and a macro F1 score of 88.41%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助pathway采纳,获得10
1秒前
敏感的花瓣关注了科研通微信公众号
1秒前
4秒前
7秒前
10秒前
12秒前
13秒前
pathway完成签到,获得积分10
16秒前
情怀应助是是是采纳,获得10
17秒前
lisasaguan发布了新的文献求助10
17秒前
18秒前
大方剑愁发布了新的文献求助10
23秒前
wanci应助lisasaguan采纳,获得10
27秒前
完美世界应助大方剑愁采纳,获得10
35秒前
ding应助dyh0521采纳,获得10
37秒前
lisasaguan完成签到,获得积分10
38秒前
40秒前
41秒前
43秒前
dyh0521发布了新的文献求助10
48秒前
51秒前
55秒前
CodeCraft应助sisyphus采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
sisyphus发布了新的文献求助10
1分钟前
dyh0521完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
大方剑愁发布了新的文献求助10
1分钟前
Ava应助大zeizei采纳,获得10
1分钟前
大方剑愁完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
CodeCraft应助大zeizei采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059624
关于积分的说明 9067236
捐赠科研通 2750100
什么是DOI,文献DOI怎么找? 1508958
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896