亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multitask Electronic Nose Data Processing Model Based on Transformer Encoder

电子鼻 计算机科学 联营 模式识别(心理学) 编码器 人工智能 特征提取 数据挖掘 超参数 机器学习 操作系统
作者
Zilong Feng,Fan Wu,Linju Zhao
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 6482-6489 被引量:2
标识
DOI:10.1109/jsen.2023.3348514
摘要

The electronic nose (E-nose) is of great importance in the field of gas detection. The detection tasks for mixed gases can usually be divided into two kinds: gas classification and concentration prediction. However, these two tasks are usually regarded as independent subtasks in the traditional E-nose pattern recognition algorithm; we usually perform gas classification first and then concentration prediction if both tasks want to be performed. This serial processing is relatively inefficient, and incorrect gas recognition results can also lead to inaccurate concentration prediction results. In this article, a multitask algorithmic model for concentration prediction and gas classification simultaneously based on a lightweight transformer encoder (MTL-Trans) was proposed. The model uses a single layer of transformer encoder to perform feature extraction using a self-attentive mechanism and then downscales the encoder output through the global averaging pooling layer to capture the global feature information among the E-nose data sequences. The extracted features are then used for parallel processing of both gas classification and concentration prediction tasks so that the response data of the E-nose can be processed efficiently. To optimize the model performance, the hyperparameters are deeply analyzed and explored in this study. Multiple sets of comparison experiments are conducted on the UCI public dataset to evaluate the model performance. The experimental results show that the proposed MTL-Trans can effectively achieve the collaborative training of gas concentration prediction and classification simultaneously with good performance (Acc.: 98.5%, CO/RMSE: 23.8, Eth/RMSE: 2.23, ${R} ^{{{2}}}$ : 0.94).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lieme_7完成签到,获得积分10
1秒前
2秒前
思源应助Simone采纳,获得10
2秒前
大乔发布了新的文献求助30
4秒前
个性半山发布了新的文献求助10
8秒前
8秒前
Zert发布了新的文献求助10
9秒前
14秒前
17秒前
Simone发布了新的文献求助10
18秒前
HTniconico完成签到 ,获得积分10
20秒前
22秒前
william发布了新的文献求助10
23秒前
琳io发布了新的文献求助10
26秒前
山野完成签到 ,获得积分10
27秒前
Jasper应助Harrison采纳,获得10
27秒前
29秒前
william完成签到,获得积分10
31秒前
kong发布了新的文献求助10
33秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
neversay4ever完成签到 ,获得积分10
35秒前
棠梨子完成签到,获得积分10
39秒前
40秒前
IdleDoc发布了新的文献求助10
42秒前
琪凯定理发布了新的文献求助10
43秒前
碳酸芙兰完成签到,获得积分10
47秒前
kong完成签到,获得积分10
48秒前
传奇3应助壮观沉鱼采纳,获得10
55秒前
酷波er应助IdleDoc采纳,获得10
55秒前
哩哩完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
壮观沉鱼发布了新的文献求助10
1分钟前
无情听南完成签到,获得积分10
1分钟前
1分钟前
夜神月完成签到,获得积分20
1分钟前
玉252发布了新的文献求助10
1分钟前
夜神月发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345722
求助须知:如何正确求助?哪些是违规求助? 4480561
关于积分的说明 13946480
捐赠科研通 4378124
什么是DOI,文献DOI怎么找? 2405626
邀请新用户注册赠送积分活动 1398183
关于科研通互助平台的介绍 1370666