亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multitask Electronic Nose Data Processing Model Based on Transformer Encoder

电子鼻 计算机科学 联营 模式识别(心理学) 编码器 人工智能 特征提取 数据挖掘 超参数 机器学习 操作系统
作者
Zilong Feng,Fan Wu,Linju Zhao
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (5): 6482-6489 被引量:2
标识
DOI:10.1109/jsen.2023.3348514
摘要

The electronic nose (E-nose) is of great importance in the field of gas detection. The detection tasks for mixed gases can usually be divided into two kinds: gas classification and concentration prediction. However, these two tasks are usually regarded as independent subtasks in the traditional E-nose pattern recognition algorithm; we usually perform gas classification first and then concentration prediction if both tasks want to be performed. This serial processing is relatively inefficient, and incorrect gas recognition results can also lead to inaccurate concentration prediction results. In this article, a multitask algorithmic model for concentration prediction and gas classification simultaneously based on a lightweight transformer encoder (MTL-Trans) was proposed. The model uses a single layer of transformer encoder to perform feature extraction using a self-attentive mechanism and then downscales the encoder output through the global averaging pooling layer to capture the global feature information among the E-nose data sequences. The extracted features are then used for parallel processing of both gas classification and concentration prediction tasks so that the response data of the E-nose can be processed efficiently. To optimize the model performance, the hyperparameters are deeply analyzed and explored in this study. Multiple sets of comparison experiments are conducted on the UCI public dataset to evaluate the model performance. The experimental results show that the proposed MTL-Trans can effectively achieve the collaborative training of gas concentration prediction and classification simultaneously with good performance (Acc.: 98.5%, CO/RMSE: 23.8, Eth/RMSE: 2.23, ${R} ^{{{2}}}$ : 0.94).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
39秒前
丰富的绮波完成签到 ,获得积分10
39秒前
42秒前
SUnnnnn发布了新的文献求助10
45秒前
辰昜发布了新的文献求助10
46秒前
无花果应助SUnnnnn采纳,获得10
53秒前
Thanks完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
1分钟前
TEMPO发布了新的文献求助10
1分钟前
2分钟前
123完成签到,获得积分10
2分钟前
123发布了新的文献求助10
2分钟前
科研通AI2S应助Becky采纳,获得10
3分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
ZanE完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
码头整点薯条完成签到,获得积分10
3分钟前
4分钟前
Becky发布了新的文献求助10
4分钟前
358489228完成签到,获得积分10
4分钟前
zhang完成签到,获得积分10
4分钟前
ataybabdallah完成签到,获得积分10
4分钟前
英姑应助zhang采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
大模型应助科研通管家采纳,获得10
5分钟前
5分钟前
zhang发布了新的文献求助10
5分钟前
深情安青应助Propitious采纳,获得10
5分钟前
6分钟前
小菜鸟加油加油完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186482
求助须知:如何正确求助?哪些是违规求助? 4371698
关于积分的说明 13612443
捐赠科研通 4224251
什么是DOI,文献DOI怎么找? 2316914
邀请新用户注册赠送积分活动 1315572
关于科研通互助平台的介绍 1264764