清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Multitask Electronic Nose Data Processing Model Based on Transformer Encoder

电子鼻 计算机科学 联营 模式识别(心理学) 编码器 人工智能 特征提取 数据挖掘 超参数 机器学习 操作系统
作者
Zilong Feng,Fan Wu,Linju Zhao
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 6482-6489
标识
DOI:10.1109/jsen.2023.3348514
摘要

The electronic nose (E-nose) is of great importance in the field of gas detection. The detection tasks for mixed gases can usually be divided into two kinds: gas classification and concentration prediction. However, these two tasks are usually regarded as independent subtasks in the traditional E-nose pattern recognition algorithm; we usually perform gas classification first and then concentration prediction if both tasks want to be performed. This serial processing is relatively inefficient, and incorrect gas recognition results can also lead to inaccurate concentration prediction results. In this article, a multitask algorithmic model for concentration prediction and gas classification simultaneously based on a lightweight transformer encoder (MTL-Trans) was proposed. The model uses a single layer of transformer encoder to perform feature extraction using a self-attentive mechanism and then downscales the encoder output through the global averaging pooling layer to capture the global feature information among the E-nose data sequences. The extracted features are then used for parallel processing of both gas classification and concentration prediction tasks so that the response data of the E-nose can be processed efficiently. To optimize the model performance, the hyperparameters are deeply analyzed and explored in this study. Multiple sets of comparison experiments are conducted on the UCI public dataset to evaluate the model performance. The experimental results show that the proposed MTL-Trans can effectively achieve the collaborative training of gas concentration prediction and classification simultaneously with good performance (Acc.: 98.5%, CO/RMSE: 23.8, Eth/RMSE: 2.23, ${R} ^{{{2}}}$ : 0.94).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一路微笑完成签到,获得积分10
1秒前
8秒前
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
科研通AI2S应助吴彦祖采纳,获得10
1分钟前
机灵自中发布了新的文献求助10
1分钟前
机灵自中完成签到,获得积分10
1分钟前
1分钟前
ZXX关闭了ZXX文献求助
2分钟前
会笑的蜗牛完成签到 ,获得积分10
2分钟前
3分钟前
mf2002mf完成签到 ,获得积分10
3分钟前
小巧的怜晴完成签到 ,获得积分10
3分钟前
努力努力再努力完成签到,获得积分10
3分钟前
3分钟前
淡然觅荷完成签到 ,获得积分10
3分钟前
ZXX发布了新的文献求助10
3分钟前
doreen完成签到 ,获得积分10
3分钟前
Wjh123456完成签到,获得积分10
4分钟前
4分钟前
4分钟前
zhangzhang完成签到,获得积分10
4分钟前
zhangzhang发布了新的文献求助10
5分钟前
SYLH应助zhangzhang采纳,获得10
5分钟前
5分钟前
blm发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
深情安青应助blm采纳,获得10
5分钟前
等待安莲应助MIMI采纳,获得10
5分钟前
5分钟前
5分钟前
甜美的秋尽完成签到,获得积分10
6分钟前
6分钟前
7分钟前
Georgechan完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041977
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505260
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887