A Multitask Electronic Nose Data Processing Model Based on Transformer Encoder

电子鼻 计算机科学 联营 模式识别(心理学) 编码器 人工智能 特征提取 数据挖掘 超参数 机器学习 操作系统
作者
Zilong Feng,Fan Wu,Linju Zhao
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (5): 6482-6489 被引量:2
标识
DOI:10.1109/jsen.2023.3348514
摘要

The electronic nose (E-nose) is of great importance in the field of gas detection. The detection tasks for mixed gases can usually be divided into two kinds: gas classification and concentration prediction. However, these two tasks are usually regarded as independent subtasks in the traditional E-nose pattern recognition algorithm; we usually perform gas classification first and then concentration prediction if both tasks want to be performed. This serial processing is relatively inefficient, and incorrect gas recognition results can also lead to inaccurate concentration prediction results. In this article, a multitask algorithmic model for concentration prediction and gas classification simultaneously based on a lightweight transformer encoder (MTL-Trans) was proposed. The model uses a single layer of transformer encoder to perform feature extraction using a self-attentive mechanism and then downscales the encoder output through the global averaging pooling layer to capture the global feature information among the E-nose data sequences. The extracted features are then used for parallel processing of both gas classification and concentration prediction tasks so that the response data of the E-nose can be processed efficiently. To optimize the model performance, the hyperparameters are deeply analyzed and explored in this study. Multiple sets of comparison experiments are conducted on the UCI public dataset to evaluate the model performance. The experimental results show that the proposed MTL-Trans can effectively achieve the collaborative training of gas concentration prediction and classification simultaneously with good performance (Acc.: 98.5%, CO/RMSE: 23.8, Eth/RMSE: 2.23, ${R} ^{{{2}}}$ : 0.94).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小红帽发布了新的文献求助10
刚刚
杰_骜不驯完成签到,获得积分10
1秒前
丁香落完成签到,获得积分10
1秒前
zzz完成签到,获得积分20
1秒前
起起完成签到 ,获得积分10
1秒前
宫野珏完成签到,获得积分10
1秒前
小余同学完成签到,获得积分10
2秒前
俭朴铸海发布了新的文献求助10
2秒前
Explorer发布了新的文献求助100
2秒前
wsft完成签到,获得积分10
3秒前
沙世平完成签到,获得积分10
3秒前
彭于晏应助弃梦采纳,获得10
3秒前
吕老黄完成签到,获得积分10
3秒前
南汉高贵的陈皮完成签到 ,获得积分10
4秒前
浮尘完成签到 ,获得积分0
4秒前
naplzp完成签到,获得积分10
5秒前
端庄断秋完成签到,获得积分10
6秒前
7秒前
7秒前
细腻的青柏应助Queen采纳,获得20
7秒前
麗会水逆退散完成签到,获得积分10
7秒前
无情平松完成签到,获得积分10
7秒前
7秒前
大方弘文发布了新的文献求助10
7秒前
英俊水池完成签到,获得积分10
8秒前
予修完成签到,获得积分10
8秒前
8秒前
甜甜的觅夏完成签到,获得积分10
8秒前
大草履虫完成签到,获得积分20
9秒前
9秒前
10秒前
文献完成签到,获得积分10
10秒前
MENG完成签到,获得积分10
10秒前
liiiii完成签到,获得积分10
10秒前
畅快菠萝完成签到,获得积分10
10秒前
lxl完成签到,获得积分10
11秒前
11秒前
朱先生发布了新的文献求助10
11秒前
11秒前
赘婿应助一一采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926