Enhancing the long-term cycling stability of Ni-rich cathodes via regulating the length/width ratio of primary particle

微观结构 阴极 材料科学 自行车 结块 粒子(生态学) 电化学 氧化物 复合材料 电池(电) 化学工程 微晶 粒径 降级(电信) 冶金 电极 化学 电气工程 功率(物理) 海洋学 物理 考古 物理化学 量子力学 工程类 历史 地质学
作者
Duzhao Han,Jilu Zhang,Mingyu Yang,Keyu Xie,Jiali Peng,Oleksandr Dolotko,Cheng Huang,Yuping Wu,Shao Le,Weibo Hua,Wei Tang
出处
期刊:Energy materials [OAE Publishing Inc.]
卷期号:4 (1) 被引量:7
标识
DOI:10.20517/energymater.2023.59
摘要

Ni-rich layered oxide cathode materials are promising candidates for high-specific-energy battery systems owing to their high reversible capacity. However, their widespread application is still severely impeded by severe capacity loss upon long-term cycling. It has been proven that the cyclic stability of Ni-rich cathode materials is closely related to their microstructure and morphology. Despite this, the influence of the microstructure of primary particles on the fatigue mechanism of Ni-rich cathode materials during prolonged cycling has not been fully understood. Here, two Ni-rich layered spherical agglomerate oxides consisting of the primary particle with different length/width ratios are successfully synthesized. It is found that the long-term structural stability of both materials strongly depends on the microstructure of primary crystallites, although there is no significant difference between the electrochemical and crystalline characteristics during the initial cycle. A higher primary particle length/width ratio could effectively inhibit the accumulation of microcracks and chemical degradation during long-term cycling, thereby promoting the electrochemical performance of the cathode materials (80% capacity retention after 200 cycles at 1 C compared to the 55% of the counterpart with a lower primary particle length/width ratio). This study highlights the structure-activity relationship between the primary particle microstructure and fatigue mechanisms during long-term cycling, thereby advancing the development of Ni-rich cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得30
刚刚
干饭虫应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
静静发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
123发布了新的文献求助10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
美丽的冰枫完成签到,获得积分10
1秒前
1秒前
1秒前
婉孝完成签到,获得积分10
1秒前
感动的溪灵完成签到,获得积分20
1秒前
勤奋发布了新的文献求助10
2秒前
星辰大海应助健身哥采纳,获得10
2秒前
张天雨发布了新的文献求助10
2秒前
Lucas应助健身哥采纳,获得10
2秒前
umi完成签到 ,获得积分10
3秒前
赘婿应助跳跃雨泽采纳,获得10
3秒前
左手的左手是左手完成签到,获得积分10
3秒前
Sir.夏季风发布了新的文献求助10
4秒前
cheong完成签到,获得积分10
4秒前
Ava应助小王子采纳,获得10
5秒前
逻辑猫发布了新的文献求助20
5秒前
一封应助diadia采纳,获得10
5秒前
5秒前
nan应助果果采纳,获得10
5秒前
Garland发布了新的文献求助10
6秒前
酷波er应助因子采纳,获得10
6秒前
7秒前
7秒前
义气的断秋完成签到,获得积分10
7秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205400
求助须知:如何正确求助?哪些是违规求助? 4384092
关于积分的说明 13652042
捐赠科研通 4242237
什么是DOI,文献DOI怎么找? 2327262
邀请新用户注册赠送积分活动 1325047
关于科研通互助平台的介绍 1277269