亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Shape-margin knowledge augmented network for thyroid nodule segmentation and diagnosis

边距(机器学习) 结核(地质) 分割 计算机科学 可解释性 特征(语言学) 人工智能 判别式 计算机辅助诊断 甲状腺 特征提取 甲状腺结节 图像分割 模式识别(心理学) 医学 机器学习 内科学 古生物学 生物 哲学 语言学
作者
Weihua Liu,Chaochao Lin,Duanduan Chen,Lijuan Niu,Rui Zhang,Z.P. Pi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107999-107999 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107999
摘要

Thyroid nodule segmentation is a crucial step in the diagnostic procedure of physicians and computer-aided diagnosis systems. However, prevailing studies often treat segmentation and diagnosis as independent tasks, overlooking the intrinsic relationship between these processes. The sequencial steps of these independent tasks in computer-aided diagnosis systems may lead to the accumulation of errors. Therefore, it is worth combining them as a whole by exploring the relationship between thyroid nodule segmentation and diagnosis. According to the diagnostic procedure of thyroid imaging reporting and data system (TI-RADS), the assessment of shape and margin characteristics is the prerequisite for radiologists to discriminate benign and malignant thyroid nodules. Inspired by TI-RADS, this study aims to integrate these tasks into a cohesive process, leveraging the insights from TI-RADS, thereby enhancing the accuracy and interpretability of thyroid nodule analysis. Specifically, this paper proposes a shape-margin knowledge augmented network (SkaNet) for simultaneous thyroid nodule segmentation and diagnosis. Due to the visual feature similarities between segmentation and diagnosis, SkaNet shares visual features in the feature extraction stage and then utilizes a dual-branch architecture to perform thyroid nodule segmentation and diagnosis tasks respectively. In the shared feature extraction, the combination of convolutional feature maps and self-attention maps allows to exploitation of both local information and global patterns in thyroid nodule images. To enhance effective discriminative features, an exponential mixture module is introduced, combining convolutional feature maps and self-attention maps through exponential weighting. Then, SkaNet is jointly optimized by a knowledge augmented multi-task loss function with a constraint penalty term. The constraint penalty term embeds shape and margin characteristics through numerical computations, establishing a vital relationship between thyroid nodule diagnosis results and segmentation masks. We evaluate the proposed approach on a public thyroid ultrasound dataset (DDTI) and a locally collected thyroid ultrasound dataset. The experimental results reveal the value of our contributions and demonstrate that our approach can yield significant improvements compared with state-of-the-art counterparts. SkaNet highlights the potential of combining thyroid nodule segmentation and diagnosis with knowledge augmented learning into a unified framework, which captures the key shape and margin characteristics for discriminating benign and malignant thyroid nodules. Our findings suggest promising insights for advancing computer-aided diagnosis joint with segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
10秒前
annazhang完成签到 ,获得积分10
13秒前
斯文败类应助科研通管家采纳,获得10
25秒前
纯真如松完成签到,获得积分10
26秒前
aaa5a123完成签到 ,获得积分10
28秒前
nuo发布了新的文献求助10
58秒前
1分钟前
白白白发布了新的文献求助10
1分钟前
1分钟前
李爱国应助昏睡的向真采纳,获得30
1分钟前
nuo完成签到,获得积分20
1分钟前
白白白完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Caleb完成签到,获得积分10
1分钟前
1分钟前
852应助当晚星散落采纳,获得10
1分钟前
1分钟前
1分钟前
Laoxing258发布了新的文献求助10
1分钟前
1分钟前
小二郎应助石榴汁的书采纳,获得10
1分钟前
发篇Sci不过分吧完成签到,获得积分10
2分钟前
酷酷海豚完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
abc应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
abc应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
我是老大应助Laoxing258采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755072
求助须知:如何正确求助?哪些是违规求助? 5491124
关于积分的说明 15380800
捐赠科研通 4893386
什么是DOI,文献DOI怎么找? 2631982
邀请新用户注册赠送积分活动 1579839
关于科研通互助平台的介绍 1535675