Shape-margin knowledge augmented network for thyroid nodule segmentation and diagnosis

边距(机器学习) 结核(地质) 分割 计算机科学 可解释性 特征(语言学) 人工智能 判别式 计算机辅助诊断 甲状腺 特征提取 甲状腺结节 图像分割 模式识别(心理学) 医学 机器学习 内科学 古生物学 生物 哲学 语言学
作者
Weihua Liu,Chaochao Lin,Duanduan Chen,Lijuan Niu,Rui Zhang,Z.P. Pi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107999-107999 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107999
摘要

Thyroid nodule segmentation is a crucial step in the diagnostic procedure of physicians and computer-aided diagnosis systems. However, prevailing studies often treat segmentation and diagnosis as independent tasks, overlooking the intrinsic relationship between these processes. The sequencial steps of these independent tasks in computer-aided diagnosis systems may lead to the accumulation of errors. Therefore, it is worth combining them as a whole by exploring the relationship between thyroid nodule segmentation and diagnosis. According to the diagnostic procedure of thyroid imaging reporting and data system (TI-RADS), the assessment of shape and margin characteristics is the prerequisite for radiologists to discriminate benign and malignant thyroid nodules. Inspired by TI-RADS, this study aims to integrate these tasks into a cohesive process, leveraging the insights from TI-RADS, thereby enhancing the accuracy and interpretability of thyroid nodule analysis. Specifically, this paper proposes a shape-margin knowledge augmented network (SkaNet) for simultaneous thyroid nodule segmentation and diagnosis. Due to the visual feature similarities between segmentation and diagnosis, SkaNet shares visual features in the feature extraction stage and then utilizes a dual-branch architecture to perform thyroid nodule segmentation and diagnosis tasks respectively. In the shared feature extraction, the combination of convolutional feature maps and self-attention maps allows to exploitation of both local information and global patterns in thyroid nodule images. To enhance effective discriminative features, an exponential mixture module is introduced, combining convolutional feature maps and self-attention maps through exponential weighting. Then, SkaNet is jointly optimized by a knowledge augmented multi-task loss function with a constraint penalty term. The constraint penalty term embeds shape and margin characteristics through numerical computations, establishing a vital relationship between thyroid nodule diagnosis results and segmentation masks. We evaluate the proposed approach on a public thyroid ultrasound dataset (DDTI) and a locally collected thyroid ultrasound dataset. The experimental results reveal the value of our contributions and demonstrate that our approach can yield significant improvements compared with state-of-the-art counterparts. SkaNet highlights the potential of combining thyroid nodule segmentation and diagnosis with knowledge augmented learning into a unified framework, which captures the key shape and margin characteristics for discriminating benign and malignant thyroid nodules. Our findings suggest promising insights for advancing computer-aided diagnosis joint with segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
陈政豪发布了新的文献求助10
1秒前
Mine_cherry应助...采纳,获得30
3秒前
鸣蜩阿六完成签到,获得积分10
3秒前
六子发布了新的文献求助10
4秒前
Tperm发布了新的文献求助10
5秒前
Orange应助surain采纳,获得10
5秒前
搜集达人应助kk采纳,获得10
5秒前
迷失自我的麻瓜完成签到,获得积分10
5秒前
sophia完成签到,获得积分10
8秒前
小巧向秋发布了新的文献求助10
8秒前
9秒前
12秒前
香蕉觅云应助怕黑明雪采纳,获得10
12秒前
sophia发布了新的文献求助10
12秒前
ahoshuo发布了新的文献求助10
13秒前
大母大发布了新的文献求助10
13秒前
15秒前
早点发SCI完成签到,获得积分10
15秒前
15秒前
16秒前
Asystasia7完成签到,获得积分10
17秒前
核桃发布了新的文献求助10
17秒前
JamesPei应助认真的方盒采纳,获得10
18秒前
小屁孩发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
Efaith发布了新的文献求助10
19秒前
和谐青柏应助诚心的傲芙采纳,获得10
20秒前
文木完成签到,获得积分10
20秒前
wqsnlyq完成签到,获得积分10
21秒前
21秒前
幸运小狗发布了新的文献求助10
22秒前
27秒前
27秒前
大模型应助默默善愁采纳,获得10
27秒前
wenzheng完成签到 ,获得积分10
28秒前
晨曦发布了新的文献求助10
28秒前
陈政豪完成签到,获得积分10
28秒前
冬雨清晨发布了新的文献求助30
28秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655