Shape-margin knowledge augmented network for thyroid nodule segmentation and diagnosis

边距(机器学习) 结核(地质) 分割 计算机科学 可解释性 特征(语言学) 人工智能 判别式 计算机辅助诊断 甲状腺 特征提取 甲状腺结节 图像分割 模式识别(心理学) 医学 机器学习 内科学 古生物学 生物 哲学 语言学
作者
Weihua Liu,Chaochao Lin,Duanduan Chen,Lijuan Niu,Rui Zhang,Z.P. Pi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107999-107999 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107999
摘要

Thyroid nodule segmentation is a crucial step in the diagnostic procedure of physicians and computer-aided diagnosis systems. However, prevailing studies often treat segmentation and diagnosis as independent tasks, overlooking the intrinsic relationship between these processes. The sequencial steps of these independent tasks in computer-aided diagnosis systems may lead to the accumulation of errors. Therefore, it is worth combining them as a whole by exploring the relationship between thyroid nodule segmentation and diagnosis. According to the diagnostic procedure of thyroid imaging reporting and data system (TI-RADS), the assessment of shape and margin characteristics is the prerequisite for radiologists to discriminate benign and malignant thyroid nodules. Inspired by TI-RADS, this study aims to integrate these tasks into a cohesive process, leveraging the insights from TI-RADS, thereby enhancing the accuracy and interpretability of thyroid nodule analysis. Specifically, this paper proposes a shape-margin knowledge augmented network (SkaNet) for simultaneous thyroid nodule segmentation and diagnosis. Due to the visual feature similarities between segmentation and diagnosis, SkaNet shares visual features in the feature extraction stage and then utilizes a dual-branch architecture to perform thyroid nodule segmentation and diagnosis tasks respectively. In the shared feature extraction, the combination of convolutional feature maps and self-attention maps allows to exploitation of both local information and global patterns in thyroid nodule images. To enhance effective discriminative features, an exponential mixture module is introduced, combining convolutional feature maps and self-attention maps through exponential weighting. Then, SkaNet is jointly optimized by a knowledge augmented multi-task loss function with a constraint penalty term. The constraint penalty term embeds shape and margin characteristics through numerical computations, establishing a vital relationship between thyroid nodule diagnosis results and segmentation masks. We evaluate the proposed approach on a public thyroid ultrasound dataset (DDTI) and a locally collected thyroid ultrasound dataset. The experimental results reveal the value of our contributions and demonstrate that our approach can yield significant improvements compared with state-of-the-art counterparts. SkaNet highlights the potential of combining thyroid nodule segmentation and diagnosis with knowledge augmented learning into a unified framework, which captures the key shape and margin characteristics for discriminating benign and malignant thyroid nodules. Our findings suggest promising insights for advancing computer-aided diagnosis joint with segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sasa发布了新的文献求助10
3秒前
甜甜静槐发布了新的文献求助10
3秒前
Dxy-TOFA完成签到,获得积分10
4秒前
4秒前
6秒前
GaoChenxi发布了新的文献求助10
7秒前
Zzz呀完成签到 ,获得积分10
8秒前
沉默诗兰完成签到,获得积分10
8秒前
11秒前
Wqian发布了新的文献求助10
14秒前
21秒前
浮游应助单薄的寻桃采纳,获得10
22秒前
25秒前
Jodie发布了新的文献求助10
27秒前
27秒前
科研通AI6应助nmeiko采纳,获得10
27秒前
28秒前
qxm完成签到 ,获得积分10
30秒前
31秒前
Quanta完成签到,获得积分10
32秒前
渔婆发布了新的文献求助10
33秒前
laruijoint完成签到,获得积分10
33秒前
淘气乌龙茶完成签到 ,获得积分10
34秒前
鹏程完成签到,获得积分10
36秒前
丘比特应助呆妞采纳,获得10
39秒前
40秒前
蔡克东发布了新的文献求助10
40秒前
LL完成签到 ,获得积分10
45秒前
小泡芙完成签到,获得积分10
46秒前
朱梦琳朱梦琳完成签到,获得积分10
47秒前
47秒前
47秒前
古藤完成签到 ,获得积分10
48秒前
52秒前
在水一方应助伯言采纳,获得10
52秒前
吴咪发布了新的文献求助10
52秒前
呆妞发布了新的文献求助10
53秒前
浮游应助Quanta采纳,获得10
54秒前
科目三应助少年游采纳,获得10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555