Shape-margin knowledge augmented network for thyroid nodule segmentation and diagnosis

边距(机器学习) 结核(地质) 分割 计算机科学 可解释性 特征(语言学) 人工智能 判别式 计算机辅助诊断 甲状腺 特征提取 甲状腺结节 图像分割 模式识别(心理学) 医学 机器学习 内科学 古生物学 生物 哲学 语言学
作者
Weihua Liu,Chaochao Lin,Duanduan Chen,Lijuan Niu,Rui Zhang,Z.P. Pi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107999-107999 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107999
摘要

Thyroid nodule segmentation is a crucial step in the diagnostic procedure of physicians and computer-aided diagnosis systems. However, prevailing studies often treat segmentation and diagnosis as independent tasks, overlooking the intrinsic relationship between these processes. The sequencial steps of these independent tasks in computer-aided diagnosis systems may lead to the accumulation of errors. Therefore, it is worth combining them as a whole by exploring the relationship between thyroid nodule segmentation and diagnosis. According to the diagnostic procedure of thyroid imaging reporting and data system (TI-RADS), the assessment of shape and margin characteristics is the prerequisite for radiologists to discriminate benign and malignant thyroid nodules. Inspired by TI-RADS, this study aims to integrate these tasks into a cohesive process, leveraging the insights from TI-RADS, thereby enhancing the accuracy and interpretability of thyroid nodule analysis. Specifically, this paper proposes a shape-margin knowledge augmented network (SkaNet) for simultaneous thyroid nodule segmentation and diagnosis. Due to the visual feature similarities between segmentation and diagnosis, SkaNet shares visual features in the feature extraction stage and then utilizes a dual-branch architecture to perform thyroid nodule segmentation and diagnosis tasks respectively. In the shared feature extraction, the combination of convolutional feature maps and self-attention maps allows to exploitation of both local information and global patterns in thyroid nodule images. To enhance effective discriminative features, an exponential mixture module is introduced, combining convolutional feature maps and self-attention maps through exponential weighting. Then, SkaNet is jointly optimized by a knowledge augmented multi-task loss function with a constraint penalty term. The constraint penalty term embeds shape and margin characteristics through numerical computations, establishing a vital relationship between thyroid nodule diagnosis results and segmentation masks. We evaluate the proposed approach on a public thyroid ultrasound dataset (DDTI) and a locally collected thyroid ultrasound dataset. The experimental results reveal the value of our contributions and demonstrate that our approach can yield significant improvements compared with state-of-the-art counterparts. SkaNet highlights the potential of combining thyroid nodule segmentation and diagnosis with knowledge augmented learning into a unified framework, which captures the key shape and margin characteristics for discriminating benign and malignant thyroid nodules. Our findings suggest promising insights for advancing computer-aided diagnosis joint with segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
背后的小白菜完成签到,获得积分10
刚刚
墨染完成签到 ,获得积分10
3秒前
daidai完成签到,获得积分10
3秒前
虞不见王完成签到 ,获得积分10
3秒前
华仔应助肥小耗采纳,获得10
4秒前
4秒前
小蘑菇应助酷炫的毛巾采纳,获得50
5秒前
5秒前
李翔发布了新的文献求助10
6秒前
xin完成签到,获得积分10
6秒前
共享精神应助行走的猫采纳,获得10
6秒前
大气机器猫完成签到,获得积分20
6秒前
lately完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
啊哈完成签到 ,获得积分10
8秒前
大模型应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得30
9秒前
科目三应助科研通管家采纳,获得10
9秒前
momo应助科研通管家采纳,获得10
9秒前
Ian_Zhang应助科研通管家采纳,获得30
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
浮浮世世应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
GuoH应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得20
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379690
求助须知:如何正确求助?哪些是违规求助? 4503940
关于积分的说明 14017109
捐赠科研通 4412782
什么是DOI,文献DOI怎么找? 2423932
邀请新用户注册赠送积分活动 1416842
关于科研通互助平台的介绍 1394431