Shape-margin knowledge augmented network for thyroid nodule segmentation and diagnosis

边距(机器学习) 结核(地质) 分割 计算机科学 可解释性 特征(语言学) 人工智能 判别式 计算机辅助诊断 甲状腺 特征提取 甲状腺结节 图像分割 模式识别(心理学) 医学 机器学习 内科学 古生物学 生物 哲学 语言学
作者
Weihua Liu,Chaochao Lin,Duanduan Chen,Lijuan Niu,Rui Zhang,Z.P. Pi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107999-107999 被引量:2
标识
DOI:10.1016/j.cmpb.2023.107999
摘要

Thyroid nodule segmentation is a crucial step in the diagnostic procedure of physicians and computer-aided diagnosis systems. However, prevailing studies often treat segmentation and diagnosis as independent tasks, overlooking the intrinsic relationship between these processes. The sequencial steps of these independent tasks in computer-aided diagnosis systems may lead to the accumulation of errors. Therefore, it is worth combining them as a whole by exploring the relationship between thyroid nodule segmentation and diagnosis. According to the diagnostic procedure of thyroid imaging reporting and data system (TI-RADS), the assessment of shape and margin characteristics is the prerequisite for radiologists to discriminate benign and malignant thyroid nodules. Inspired by TI-RADS, this study aims to integrate these tasks into a cohesive process, leveraging the insights from TI-RADS, thereby enhancing the accuracy and interpretability of thyroid nodule analysis. Specifically, this paper proposes a shape-margin knowledge augmented network (SkaNet) for simultaneous thyroid nodule segmentation and diagnosis. Due to the visual feature similarities between segmentation and diagnosis, SkaNet shares visual features in the feature extraction stage and then utilizes a dual-branch architecture to perform thyroid nodule segmentation and diagnosis tasks respectively. In the shared feature extraction, the combination of convolutional feature maps and self-attention maps allows to exploitation of both local information and global patterns in thyroid nodule images. To enhance effective discriminative features, an exponential mixture module is introduced, combining convolutional feature maps and self-attention maps through exponential weighting. Then, SkaNet is jointly optimized by a knowledge augmented multi-task loss function with a constraint penalty term. The constraint penalty term embeds shape and margin characteristics through numerical computations, establishing a vital relationship between thyroid nodule diagnosis results and segmentation masks. We evaluate the proposed approach on a public thyroid ultrasound dataset (DDTI) and a locally collected thyroid ultrasound dataset. The experimental results reveal the value of our contributions and demonstrate that our approach can yield significant improvements compared with state-of-the-art counterparts. SkaNet highlights the potential of combining thyroid nodule segmentation and diagnosis with knowledge augmented learning into a unified framework, which captures the key shape and margin characteristics for discriminating benign and malignant thyroid nodules. Our findings suggest promising insights for advancing computer-aided diagnosis joint with segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁听白发布了新的文献求助10
1秒前
1秒前
2秒前
xyzdmmm完成签到,获得积分10
4秒前
JamesPei应助骨小梁采纳,获得10
5秒前
weixin112233完成签到,获得积分10
6秒前
6秒前
儒雅的焦发布了新的文献求助10
7秒前
狗大王完成签到,获得积分10
9秒前
蒋田姣发布了新的文献求助10
10秒前
10秒前
zyj完成签到,获得积分10
10秒前
小奥奥完成签到,获得积分10
12秒前
火星上荟完成签到 ,获得积分10
13秒前
小蘑菇应助zyj采纳,获得10
14秒前
bkagyin应助玲珑油豆腐采纳,获得10
14秒前
bjut完成签到,获得积分10
15秒前
时光的因果完成签到,获得积分10
15秒前
小七完成签到,获得积分10
16秒前
就叫希望吧完成签到 ,获得积分10
16秒前
haoaaa发布了新的文献求助20
17秒前
白白是只小白鼠完成签到,获得积分10
17秒前
Jasper应助感动尔柳采纳,获得10
19秒前
开放的紫伊完成签到,获得积分10
21秒前
22秒前
24秒前
24秒前
听白完成签到,获得积分10
24秒前
mini的yr完成签到 ,获得积分10
25秒前
顺利的曼寒完成签到 ,获得积分10
26秒前
赞zan发布了新的文献求助10
26秒前
27秒前
28秒前
北极星完成签到,获得积分10
28秒前
柚子完成签到 ,获得积分10
29秒前
yuzhou完成签到 ,获得积分10
29秒前
Maestro_S应助宁听白采纳,获得20
29秒前
feb完成签到,获得积分10
31秒前
Nitric_Oxide应助weslywang采纳,获得10
31秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825