De novo design of diverse small molecule binders and sensors using Shape Complementary Pseudocycles

小分子 分子 互补性(分子生物学) 纳米孔 亲缘关系 模块化设计 纳米技术 对接(动物) 化学 材料科学 计算机科学 立体化学 生物 医学 生物化学 遗传学 护理部 有机化学 操作系统
作者
Linna An,Meerit Y. Said,Long Tran,Sagardip Majumder,Inna Goreshnik,Gyu Rie Lee,David Juergens,Justas Dauparas,Ivan Anishchenko,Brian Coventry,Asim K. Bera,Alex Kang,Paul M. Levine,Valentina Álvarez,Arvind Pillai,Christoffer Norn,David Feldman,Dmitri Zorine,Derrick R. Hicks,Xinting Li,M. SANCHEZ,Dionne Vafeados,Patrick J. Salveson,Anastassia Vorobieva,David Baker
标识
DOI:10.1101/2023.12.20.572602
摘要

Abstract A general method for designing proteins to bind and sense any small molecule of interest would be widely useful. Due to the small number of atoms to interact with, binding to small molecules with high affinity requires highly shape complementary pockets, and transducing binding events into signals is challenging. Here we describe an integrated deep learning and energy based approach for designing high shape complementarity binders to small molecules that are poised for downstream sensing applications. We employ deep learning generated psuedocycles with repeating structural units surrounding central pockets; depending on the geometry of the structural unit and repeat number, these pockets span wide ranges of sizes and shapes. For a small molecule target of interest, we extensively sample high shape complementarity pseudocycles to generate large numbers of customized potential binding pockets; the ligand binding poses and the interacting interfaces are then optimized for high affinity binding. We computationally design binders to four diverse molecules, including for the first time polar flexible molecules such as methotrexate and thyroxine, which are expressed at high levels and have nanomolar affinities straight out of the computer. Co-crystal structures are nearly identical to the design models. Taking advantage of the modular repeating structure of pseudocycles and central location of the binding pockets, we constructed low noise nanopore sensors and chemically induced dimerization systems by splitting the binders into domains which assemble into the original pseudocycle pocket upon target molecule addition. One Sentence Summary We use a pseuodocycle-based shape complementarity optimizing approach to design nanomolar binders to diverse ligands, including the flexible and polar methotrexate and thyroxine, that can be directly converted into ligand-gated nanopores and chemically induced dimerization systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lseven完成签到,获得积分10
1秒前
1秒前
fengmian完成签到,获得积分10
2秒前
坚定天佑完成签到,获得积分20
3秒前
4秒前
fangyuan发布了新的文献求助10
4秒前
不太想学习完成签到 ,获得积分10
5秒前
5秒前
Owen应助兜子采纳,获得10
6秒前
6秒前
寒冷怜南发布了新的文献求助10
6秒前
manjusaka发布了新的文献求助20
7秒前
王珺发布了新的文献求助10
8秒前
9秒前
overlood完成签到 ,获得积分10
10秒前
11秒前
tuyfytjt发布了新的文献求助10
12秒前
wangzheng发布了新的文献求助10
12秒前
当当发布了新的文献求助10
12秒前
火火发布了新的文献求助30
13秒前
冷艳薯片发布了新的文献求助20
13秒前
马里奥发布了新的文献求助10
16秒前
科科完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
19秒前
阿宁宁完成签到 ,获得积分10
22秒前
聪慧小霜应助火火采纳,获得10
22秒前
当当完成签到,获得积分20
23秒前
咄咄完成签到 ,获得积分10
23秒前
zhang26xian完成签到,获得积分10
23秒前
24秒前
26秒前
NIUB完成签到,获得积分10
28秒前
28秒前
29秒前
高山七石发布了新的文献求助10
29秒前
郑蒸日上发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585938
求助须知:如何正确求助?哪些是违规求助? 4002681
关于积分的说明 12390812
捐赠科研通 3678747
什么是DOI,文献DOI怎么找? 2027592
邀请新用户注册赠送积分活动 1061082
科研通“疑难数据库(出版商)”最低求助积分说明 947447