De novo design of diverse small molecule binders and sensors using Shape Complementary Pseudocycles

小分子 分子 互补性(分子生物学) 纳米孔 亲缘关系 模块化设计 纳米技术 对接(动物) 化学 材料科学 计算机科学 立体化学 生物 医学 生物化学 遗传学 护理部 有机化学 操作系统
作者
Linna An,Meerit Y. Said,Long Tran,Sagardip Majumder,Inna Goreshnik,Gyu Rie Lee,David Juergens,Justas Dauparas,Ivan Anishchenko,Brian Coventry,Asim K. Bera,Alex Kang,Paul M. Levine,Valentina Álvarez,Arvind Pillai,Christoffer Norn,David Feldman,Dmitri Zorine,Derrick R. Hicks,Xinting Li,M. SANCHEZ,Dionne Vafeados,Patrick J. Salveson,Anastassia Vorobieva,David Baker
标识
DOI:10.1101/2023.12.20.572602
摘要

Abstract A general method for designing proteins to bind and sense any small molecule of interest would be widely useful. Due to the small number of atoms to interact with, binding to small molecules with high affinity requires highly shape complementary pockets, and transducing binding events into signals is challenging. Here we describe an integrated deep learning and energy based approach for designing high shape complementarity binders to small molecules that are poised for downstream sensing applications. We employ deep learning generated psuedocycles with repeating structural units surrounding central pockets; depending on the geometry of the structural unit and repeat number, these pockets span wide ranges of sizes and shapes. For a small molecule target of interest, we extensively sample high shape complementarity pseudocycles to generate large numbers of customized potential binding pockets; the ligand binding poses and the interacting interfaces are then optimized for high affinity binding. We computationally design binders to four diverse molecules, including for the first time polar flexible molecules such as methotrexate and thyroxine, which are expressed at high levels and have nanomolar affinities straight out of the computer. Co-crystal structures are nearly identical to the design models. Taking advantage of the modular repeating structure of pseudocycles and central location of the binding pockets, we constructed low noise nanopore sensors and chemically induced dimerization systems by splitting the binders into domains which assemble into the original pseudocycle pocket upon target molecule addition. One Sentence Summary We use a pseuodocycle-based shape complementarity optimizing approach to design nanomolar binders to diverse ligands, including the flexible and polar methotrexate and thyroxine, that can be directly converted into ligand-gated nanopores and chemically induced dimerization systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上瘾完成签到 ,获得积分20
1秒前
fei应助ZHU采纳,获得20
1秒前
背后的雪卉应助坚强寻桃采纳,获得10
2秒前
SHAHc发布了新的文献求助10
2秒前
3秒前
aim发布了新的文献求助10
3秒前
thynkz完成签到,获得积分10
4秒前
咯咯咯哒完成签到,获得积分10
4秒前
科研通AI6应助Sun1c7采纳,获得10
4秒前
5秒前
jiang完成签到,获得积分10
7秒前
彭于晏应助yuanqing采纳,获得10
7秒前
Hello应助lin采纳,获得10
7秒前
7秒前
我是老大应助BW打工仔采纳,获得10
8秒前
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
旭007完成签到,获得积分20
9秒前
Mic应助科研通管家采纳,获得30
9秒前
Owen应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
元谷雪应助科研通管家采纳,获得10
10秒前
SciGPT应助会撒娇的天抒采纳,获得10
10秒前
维奈克拉应助科研通管家采纳,获得20
10秒前
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
测控应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得20
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
FashionBoy应助科研通管家采纳,获得30
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
维奈克拉应助科研通管家采纳,获得20
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589181
求助须知:如何正确求助?哪些是违规求助? 4673512
关于积分的说明 14790948
捐赠科研通 4627714
什么是DOI,文献DOI怎么找? 2532132
邀请新用户注册赠送积分活动 1500793
关于科研通互助平台的介绍 1468403