亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep convolutional neural networks for aged microplastics identification by Fourier transform infrared spectra classification

过度拟合 人工智能 卷积神经网络 模式识别(心理学) 计算机科学 人工神经网络 稳健性(进化) 深度学习 随机森林 随机梯度下降算法 机器学习 化学 生物化学 基因
作者
Ganning Zeng,Yuan Ma,Mingming Du,Tiansheng Chen,Liangyu Lin,Mengzheng Dai,Hongwei Luo,Lingling Hu,Qian Zhou,Xiangliang Pan
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:913: 169623-169623 被引量:21
标识
DOI:10.1016/j.scitotenv.2023.169623
摘要

Infrared (IR) spectroscopy is a powerful technique for detecting and identifying Microplastics (MPs) in the environment. However, the aging of MPs presents a challenge in accurately identification and classification. To address this challenge, a classification model based on deep convolutional neural networks (CNNs) was developed using infrared spectra results. Particularly, original infrared (IR) spectra were used as the sample dataset, therefore, relevant spectral details were preserved and additional noise or distortions were not introduced. The Adam (Adaptive moment estimation) algorithm was employed to accelerate gradient descent and weight update, the Dropout function was implemented to prevent overfitting and enhance the generalization performance of the network. An activation function ReLu (Rectified Linear Unit) was also utilized to simplify the co-adaptation relationship among neurons and prevent gradient disappearance. The performance of the CNN model in MPs classification was evaluated based on accuracy and robustness, and compared with other machine learning techniques. CNN model demonstrated superior capabilities in feature extraction and recognition, and greatly simplified the pre-processing procedure. The identification results of aged commercial microplastic samples showed accuracies of 40 % for Artificial Neural Network, 60 % for Random Forest, 80 % for Deep Neural Network, and 100 % for CNN, respectively. The CNN architecture developed in this work also demonstrates versatility by being suitable for both limited data cases and potential expansion to include more discrete data in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助ceeray23采纳,获得20
14秒前
慕青应助ceeray23采纳,获得20
20秒前
xiaoyuan发布了新的文献求助10
21秒前
53秒前
Alisha完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小鹿发布了新的文献求助10
1分钟前
情怀应助小鹿采纳,获得10
2分钟前
Akim应助ceeray23采纳,获得20
2分钟前
trophozoite完成签到 ,获得积分10
2分钟前
juan完成签到 ,获得积分0
2分钟前
丘比特应助ceeray23采纳,获得20
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
shepherd应助ceeray23采纳,获得20
2分钟前
香蕉觅云应助ceeray23采纳,获得20
2分钟前
吴静完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助20
3分钟前
3分钟前
跳跳虎完成签到 ,获得积分10
3分钟前
领导范儿应助光能使者采纳,获得10
3分钟前
LeoBigman完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
光能使者发布了新的文献求助10
4分钟前
戴云溥应助ceeray23采纳,获得20
4分钟前
平常安雁完成签到 ,获得积分10
4分钟前
5分钟前
白日睡觉发布了新的文献求助10
5分钟前
wanci应助白日睡觉采纳,获得10
5分钟前
从容芮完成签到,获得积分0
5分钟前
Jasper应助感谢采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
5分钟前
万能图书馆应助ceeray23采纳,获得20
5分钟前
感谢发布了新的文献求助10
5分钟前
Zz完成签到 ,获得积分10
6分钟前
6分钟前
枫于林完成签到 ,获得积分10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
彭于晏应助ceeray23采纳,获得20
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584770
求助须知:如何正确求助?哪些是违规求助? 4668652
关于积分的说明 14771555
捐赠科研通 4613838
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499078
关于科研通互助平台的介绍 1467523