Deep convolutional neural networks for aged microplastics identification by Fourier transform infrared spectra classification

过度拟合 人工智能 卷积神经网络 模式识别(心理学) 计算机科学 人工神经网络 稳健性(进化) 深度学习 随机森林 随机梯度下降算法 机器学习 化学 生物化学 基因
作者
Ganning Zeng,Yuan Ma,Mingming Du,Tiansheng Chen,Liangyu Lin,Mengzheng Dai,Hongwei Luo,Lingling Hu,Qian Zhou,Xiangliang Pan
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:913: 169623-169623 被引量:8
标识
DOI:10.1016/j.scitotenv.2023.169623
摘要

Infrared (IR) spectroscopy is a powerful technique for detecting and identifying Microplastics (MPs) in the environment. However, the aging of MPs presents a challenge in accurately identification and classification. To address this challenge, a classification model based on deep convolutional neural networks (CNNs) was developed using infrared spectra results. Particularly, original infrared (IR) spectra were used as the sample dataset, therefore, relevant spectral details were preserved and additional noise or distortions were not introduced. The Adam (Adaptive moment estimation) algorithm was employed to accelerate gradient descent and weight update, the Dropout function was implemented to prevent overfitting and enhance the generalization performance of the network. An activation function ReLu (Rectified Linear Unit) was also utilized to simplify the co-adaptation relationship among neurons and prevent gradient disappearance. The performance of the CNN model in MPs classification was evaluated based on accuracy and robustness, and compared with other machine learning techniques. CNN model demonstrated superior capabilities in feature extraction and recognition, and greatly simplified the pre-processing procedure. The identification results of aged commercial microplastic samples showed accuracies of 40 % for Artificial Neural Network, 60 % for Random Forest, 80 % for Deep Neural Network, and 100 % for CNN, respectively. The CNN architecture developed in this work also demonstrates versatility by being suitable for both limited data cases and potential expansion to include more discrete data in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
#include应助科研通管家采纳,获得20
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
刚刚
无花果应助科研通管家采纳,获得10
刚刚
刚刚
安白发布了新的文献求助10
1秒前
Billy发布了新的文献求助50
3秒前
星辰大海应助zhaoying采纳,获得10
7秒前
qw完成签到,获得积分10
7秒前
zhangbh1990完成签到 ,获得积分10
10秒前
Jasper应助妇愁者联盟采纳,获得10
10秒前
李爱国应助平常的静枫采纳,获得10
11秒前
三文鱼完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
17秒前
18秒前
三文鱼发布了新的文献求助10
18秒前
琛哥物理完成签到,获得积分10
18秒前
Mint发布了新的文献求助10
19秒前
Justin发布了新的文献求助10
22秒前
阳光怀亦发布了新的文献求助10
22秒前
23秒前
23秒前
淡淡的荷花完成签到,获得积分10
24秒前
啊强完成签到 ,获得积分10
26秒前
桥豆麻袋完成签到,获得积分10
27秒前
27秒前
Alkaline7432完成签到,获得积分10
29秒前
Uniibooy发布了新的文献求助10
29秒前
jimmyhui发布了新的文献求助30
33秒前
Tiw完成签到,获得积分10
33秒前
Cmdbjzw发布了新的文献求助20
35秒前
37秒前
木穹完成签到,获得积分10
38秒前
树在西元前完成签到,获得积分10
38秒前
1233发布了新的文献求助10
40秒前
41秒前
莹亮的星空完成签到,获得积分0
41秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3116426
求助须知:如何正确求助?哪些是违规求助? 2766409
关于积分的说明 7686902
捐赠科研通 2421820
什么是DOI,文献DOI怎么找? 1285893
科研通“疑难数据库(出版商)”最低求助积分说明 620169
版权声明 599829