Deep convolutional neural networks for aged microplastics identification by Fourier transform infrared spectra classification

过度拟合 人工智能 卷积神经网络 模式识别(心理学) 计算机科学 人工神经网络 稳健性(进化) 深度学习 随机森林 随机梯度下降算法 机器学习 化学 生物化学 基因
作者
Ganning Zeng,Yuan Ma,Mingming Du,Tiansheng Chen,Liangyu Lin,Mengzheng Dai,Hongwei Luo,Lingling Hu,Qian Zhou,Xiangliang Pan
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:913: 169623-169623 被引量:21
标识
DOI:10.1016/j.scitotenv.2023.169623
摘要

Infrared (IR) spectroscopy is a powerful technique for detecting and identifying Microplastics (MPs) in the environment. However, the aging of MPs presents a challenge in accurately identification and classification. To address this challenge, a classification model based on deep convolutional neural networks (CNNs) was developed using infrared spectra results. Particularly, original infrared (IR) spectra were used as the sample dataset, therefore, relevant spectral details were preserved and additional noise or distortions were not introduced. The Adam (Adaptive moment estimation) algorithm was employed to accelerate gradient descent and weight update, the Dropout function was implemented to prevent overfitting and enhance the generalization performance of the network. An activation function ReLu (Rectified Linear Unit) was also utilized to simplify the co-adaptation relationship among neurons and prevent gradient disappearance. The performance of the CNN model in MPs classification was evaluated based on accuracy and robustness, and compared with other machine learning techniques. CNN model demonstrated superior capabilities in feature extraction and recognition, and greatly simplified the pre-processing procedure. The identification results of aged commercial microplastic samples showed accuracies of 40 % for Artificial Neural Network, 60 % for Random Forest, 80 % for Deep Neural Network, and 100 % for CNN, respectively. The CNN architecture developed in this work also demonstrates versatility by being suitable for both limited data cases and potential expansion to include more discrete data in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过时的明杰完成签到,获得积分10
刚刚
小王小王发布了新的文献求助10
1秒前
longh发布了新的文献求助20
3秒前
星辰大海应助cnyyp采纳,获得10
3秒前
4秒前
小番茄发布了新的文献求助10
4秒前
迷路的海冬完成签到,获得积分10
5秒前
打一豆豆发布了新的文献求助10
5秒前
yushanriqing应助寒冷的箴采纳,获得10
6秒前
今后应助piilii采纳,获得10
7秒前
完美世界应助Denmark采纳,获得10
7秒前
silan发布了新的文献求助20
8秒前
fygiuh发布了新的文献求助10
10秒前
11秒前
13秒前
Rue完成签到,获得积分10
13秒前
13秒前
学术乞丐发布了新的文献求助20
13秒前
那西西完成签到,获得积分10
14秒前
芋泥面包发布了新的文献求助10
15秒前
ZB完成签到,获得积分10
15秒前
xx发布了新的文献求助10
15秒前
15秒前
深情安青应助郭耀锐采纳,获得10
16秒前
坦率的谷雪完成签到,获得积分10
16秒前
茗牌棉花发布了新的文献求助10
17秒前
Jako完成签到 ,获得积分10
17秒前
勤恳寒安发布了新的文献求助10
17秒前
bkagyin应助cnyyp采纳,获得10
18秒前
勤恳的宛菡完成签到,获得积分10
18秒前
19秒前
20秒前
kk完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
Sera完成签到,获得积分10
24秒前
Denmark发布了新的文献求助10
25秒前
25秒前
gxt完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790