Deep convolutional neural networks for aged microplastics identification by Fourier transform infrared spectra classification

过度拟合 人工智能 卷积神经网络 模式识别(心理学) 计算机科学 人工神经网络 稳健性(进化) 深度学习 随机森林 随机梯度下降算法 机器学习 化学 生物化学 基因
作者
Ganning Zeng,Yuan Ma,Mingming Du,Tiansheng Chen,Liangyu Lin,Mengzheng Dai,Hongwei Luo,Lingling Hu,Qian Zhou,Xiangliang Pan
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:913: 169623-169623 被引量:21
标识
DOI:10.1016/j.scitotenv.2023.169623
摘要

Infrared (IR) spectroscopy is a powerful technique for detecting and identifying Microplastics (MPs) in the environment. However, the aging of MPs presents a challenge in accurately identification and classification. To address this challenge, a classification model based on deep convolutional neural networks (CNNs) was developed using infrared spectra results. Particularly, original infrared (IR) spectra were used as the sample dataset, therefore, relevant spectral details were preserved and additional noise or distortions were not introduced. The Adam (Adaptive moment estimation) algorithm was employed to accelerate gradient descent and weight update, the Dropout function was implemented to prevent overfitting and enhance the generalization performance of the network. An activation function ReLu (Rectified Linear Unit) was also utilized to simplify the co-adaptation relationship among neurons and prevent gradient disappearance. The performance of the CNN model in MPs classification was evaluated based on accuracy and robustness, and compared with other machine learning techniques. CNN model demonstrated superior capabilities in feature extraction and recognition, and greatly simplified the pre-processing procedure. The identification results of aged commercial microplastic samples showed accuracies of 40 % for Artificial Neural Network, 60 % for Random Forest, 80 % for Deep Neural Network, and 100 % for CNN, respectively. The CNN architecture developed in this work also demonstrates versatility by being suitable for both limited data cases and potential expansion to include more discrete data in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyc完成签到,获得积分10
刚刚
华仔应助阳光的未来采纳,获得10
刚刚
刚刚
NexusExplorer应助Pendragon采纳,获得30
刚刚
ZJR完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
Lynne发布了新的文献求助10
2秒前
3秒前
斯文败类应助ZHN采纳,获得10
3秒前
Twonej应助辣椒油想躺平采纳,获得30
4秒前
5秒前
shenlan完成签到,获得积分10
5秒前
a502410600发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
爆米花应助wenyliang采纳,获得10
8秒前
wyuan完成签到,获得积分10
9秒前
陈陈陈发布了新的文献求助10
9秒前
徐牛牛完成签到,获得积分10
10秒前
英姑应助明理的凡霜采纳,获得10
10秒前
wang发布了新的文献求助10
10秒前
华仔应助鲜艳的慕晴采纳,获得10
11秒前
大意的雪一完成签到,获得积分10
12秒前
华仔应助七五采纳,获得10
12秒前
领导范儿应助DAISY采纳,获得30
12秒前
13秒前
Lucas应助liya采纳,获得10
13秒前
罗美女应助徐牛牛采纳,获得10
13秒前
14秒前
14秒前
海笑天涯完成签到,获得积分10
14秒前
gonna完成签到,获得积分10
14秒前
15秒前
猪猪侠发布了新的文献求助30
15秒前
LeonPan完成签到,获得积分10
16秒前
17秒前
17秒前
充电宝应助wang采纳,获得10
18秒前
18秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704559
求助须知:如何正确求助?哪些是违规求助? 5158120
关于积分的说明 15242392
捐赠科研通 4858539
什么是DOI,文献DOI怎么找? 2607330
邀请新用户注册赠送积分活动 1558287
关于科研通互助平台的介绍 1516105