亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep convolutional neural networks for aged microplastics identification by Fourier transform infrared spectra classification

过度拟合 人工智能 卷积神经网络 模式识别(心理学) 计算机科学 人工神经网络 稳健性(进化) 深度学习 随机森林 随机梯度下降算法 机器学习 化学 生物化学 基因
作者
Ganning Zeng,Yuan Ma,Mingming Du,Tiansheng Chen,Liangyu Lin,Mengzheng Dai,Hongwei Luo,Lingling Hu,Qian Zhou,Xiangliang Pan
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:913: 169623-169623 被引量:21
标识
DOI:10.1016/j.scitotenv.2023.169623
摘要

Infrared (IR) spectroscopy is a powerful technique for detecting and identifying Microplastics (MPs) in the environment. However, the aging of MPs presents a challenge in accurately identification and classification. To address this challenge, a classification model based on deep convolutional neural networks (CNNs) was developed using infrared spectra results. Particularly, original infrared (IR) spectra were used as the sample dataset, therefore, relevant spectral details were preserved and additional noise or distortions were not introduced. The Adam (Adaptive moment estimation) algorithm was employed to accelerate gradient descent and weight update, the Dropout function was implemented to prevent overfitting and enhance the generalization performance of the network. An activation function ReLu (Rectified Linear Unit) was also utilized to simplify the co-adaptation relationship among neurons and prevent gradient disappearance. The performance of the CNN model in MPs classification was evaluated based on accuracy and robustness, and compared with other machine learning techniques. CNN model demonstrated superior capabilities in feature extraction and recognition, and greatly simplified the pre-processing procedure. The identification results of aged commercial microplastic samples showed accuracies of 40 % for Artificial Neural Network, 60 % for Random Forest, 80 % for Deep Neural Network, and 100 % for CNN, respectively. The CNN architecture developed in this work also demonstrates versatility by being suitable for both limited data cases and potential expansion to include more discrete data in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
15秒前
33秒前
33秒前
天天快乐应助科研通管家采纳,获得10
34秒前
汉堡包应助桃子e采纳,获得10
41秒前
50秒前
桃子e发布了新的文献求助10
53秒前
伊伊伊伊一一一完成签到,获得积分10
1分钟前
ding应助scn666采纳,获得10
1分钟前
思源应助桃子e采纳,获得10
1分钟前
欣喜的香菱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
桃子e发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
难过忆山发布了新的文献求助10
2分钟前
英姑应助Zz采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hq完成签到 ,获得积分10
3分钟前
3分钟前
poki完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
4分钟前
天天快乐应助Fluoxtine采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
twk发布了新的文献求助10
5分钟前
5分钟前
研友_VZG7GZ应助粗暴的坤采纳,获得10
5分钟前
5分钟前
科研通AI6.1应助jyy采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788708
求助须知:如何正确求助?哪些是违规求助? 5710788
关于积分的说明 15473823
捐赠科研通 4916686
什么是DOI,文献DOI怎么找? 2646520
邀请新用户注册赠送积分活动 1594203
关于科研通互助平台的介绍 1548617