Deep convolutional neural networks for aged microplastics identification by Fourier transform infrared spectra classification

过度拟合 人工智能 卷积神经网络 模式识别(心理学) 计算机科学 人工神经网络 稳健性(进化) 深度学习 随机森林 随机梯度下降算法 机器学习 化学 生物化学 基因
作者
Ganning Zeng,Yuan Ma,Mingming Du,Tiansheng Chen,Liangyu Lin,Mengzheng Dai,Hongwei Luo,Lingling Hu,Qian Zhou,Xiangliang Pan
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:913: 169623-169623 被引量:21
标识
DOI:10.1016/j.scitotenv.2023.169623
摘要

Infrared (IR) spectroscopy is a powerful technique for detecting and identifying Microplastics (MPs) in the environment. However, the aging of MPs presents a challenge in accurately identification and classification. To address this challenge, a classification model based on deep convolutional neural networks (CNNs) was developed using infrared spectra results. Particularly, original infrared (IR) spectra were used as the sample dataset, therefore, relevant spectral details were preserved and additional noise or distortions were not introduced. The Adam (Adaptive moment estimation) algorithm was employed to accelerate gradient descent and weight update, the Dropout function was implemented to prevent overfitting and enhance the generalization performance of the network. An activation function ReLu (Rectified Linear Unit) was also utilized to simplify the co-adaptation relationship among neurons and prevent gradient disappearance. The performance of the CNN model in MPs classification was evaluated based on accuracy and robustness, and compared with other machine learning techniques. CNN model demonstrated superior capabilities in feature extraction and recognition, and greatly simplified the pre-processing procedure. The identification results of aged commercial microplastic samples showed accuracies of 40 % for Artificial Neural Network, 60 % for Random Forest, 80 % for Deep Neural Network, and 100 % for CNN, respectively. The CNN architecture developed in this work also demonstrates versatility by being suitable for both limited data cases and potential expansion to include more discrete data in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
orchid发布了新的文献求助10
2秒前
小尚完成签到,获得积分10
2秒前
小小咸鱼完成签到 ,获得积分10
3秒前
summer完成签到,获得积分10
3秒前
3秒前
Frank完成签到,获得积分10
4秒前
Criminology34发布了新的文献求助300
5秒前
嘿嘿应助乾澪怀新采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
happy星发布了新的文献求助10
8秒前
Boro发布了新的文献求助10
8秒前
9秒前
之_ZH完成签到 ,获得积分10
10秒前
xingyi完成签到,获得积分10
10秒前
无所忌惮的玫瑰果完成签到,获得积分10
11秒前
平贝花应助mtfx采纳,获得10
11秒前
嘴巴张大一点完成签到,获得积分10
11秒前
qigu完成签到,获得积分10
11秒前
包容的垣完成签到,获得积分10
11秒前
11秒前
heqiancan完成签到,获得积分10
12秒前
smofan发布了新的文献求助10
12秒前
草莓星完成签到,获得积分10
13秒前
14秒前
千树怜完成签到,获得积分20
14秒前
辛勤白玉发布了新的文献求助10
15秒前
andrewliu发布了新的文献求助10
16秒前
孟梦发布了新的文献求助10
16秒前
Orange应助Enkcy采纳,获得10
16秒前
小蘑菇应助SHAHc采纳,获得10
17秒前
17秒前
hyperle完成签到,获得积分10
17秒前
隐形的乐枫完成签到,获得积分10
17秒前
18秒前
蓝天发布了新的文献求助20
20秒前
田様应助粉红色的小花卷采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176