亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep convolutional neural networks for aged microplastics identification by Fourier transform infrared spectra classification

过度拟合 人工智能 卷积神经网络 模式识别(心理学) 计算机科学 人工神经网络 稳健性(进化) 深度学习 随机森林 随机梯度下降算法 机器学习 化学 生物化学 基因
作者
Ganning Zeng,Yuan Ma,Mingming Du,Tiansheng Chen,Liangyu Lin,Mengzheng Dai,Hongwei Luo,Lingling Hu,Qian Zhou,Xiangliang Pan
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:913: 169623-169623 被引量:8
标识
DOI:10.1016/j.scitotenv.2023.169623
摘要

Infrared (IR) spectroscopy is a powerful technique for detecting and identifying Microplastics (MPs) in the environment. However, the aging of MPs presents a challenge in accurately identification and classification. To address this challenge, a classification model based on deep convolutional neural networks (CNNs) was developed using infrared spectra results. Particularly, original infrared (IR) spectra were used as the sample dataset, therefore, relevant spectral details were preserved and additional noise or distortions were not introduced. The Adam (Adaptive moment estimation) algorithm was employed to accelerate gradient descent and weight update, the Dropout function was implemented to prevent overfitting and enhance the generalization performance of the network. An activation function ReLu (Rectified Linear Unit) was also utilized to simplify the co-adaptation relationship among neurons and prevent gradient disappearance. The performance of the CNN model in MPs classification was evaluated based on accuracy and robustness, and compared with other machine learning techniques. CNN model demonstrated superior capabilities in feature extraction and recognition, and greatly simplified the pre-processing procedure. The identification results of aged commercial microplastic samples showed accuracies of 40 % for Artificial Neural Network, 60 % for Random Forest, 80 % for Deep Neural Network, and 100 % for CNN, respectively. The CNN architecture developed in this work also demonstrates versatility by being suitable for both limited data cases and potential expansion to include more discrete data in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情向薇应助hm1999采纳,获得10
刚刚
1秒前
4秒前
jyy应助26采纳,获得10
5秒前
8秒前
11秒前
CodeCraft应助浮名半生采纳,获得10
11秒前
11秒前
12秒前
生信精准科研完成签到,获得积分10
15秒前
21秒前
23秒前
33秒前
38秒前
44秒前
小白发布了新的文献求助10
57秒前
1分钟前
1分钟前
1分钟前
cnbhhhhh完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
TongKY完成签到 ,获得积分10
2分钟前
lynn完成签到,获得积分10
2分钟前
26发布了新的文献求助10
2分钟前
Y先生完成签到 ,获得积分10
2分钟前
河豚不擦鞋完成签到 ,获得积分10
2分钟前
淀粉发布了新的文献求助10
2分钟前
3分钟前
wxyllxx发布了新的文献求助10
3分钟前
MineMine完成签到 ,获得积分10
3分钟前
3分钟前
火星上誉完成签到 ,获得积分10
3分钟前
IvanMcRae完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963174
求助须知:如何正确求助?哪些是违规求助? 3509066
关于积分的说明 11145017
捐赠科研通 3242122
什么是DOI,文献DOI怎么找? 1791759
邀请新用户注册赠送积分活动 873146
科研通“疑难数据库(出版商)”最低求助积分说明 803628