自编码
计算机科学
粒子群优化
人工智能
期限(时间)
数据预处理
可解释性
主成分分析
智能电网
数据挖掘
机器学习
深度学习
工程类
量子力学
电气工程
物理
作者
Yang Zhang,Ran Jing,Xia Zhang,Ruifeng Hu,Na Wang,Liyun Li,Young Ae Kang
标识
DOI:10.1109/sges59720.2023.10366966
摘要
With the development of power grid big data and industrial automation, the number of nonlinear factors influencing load fluctuations is increasing, complicating accurate prediction. This paper addresses predicting short-term electricity load in industrial parks using a Temporal Convolutional Network (TCN) model. In the training phase, Quantum Particle Swarm Optimization (QPSO) tunes hyperparameters to improve accuracy. In quantum space, particles search globally, optimizing predictions. For data preprocessing, artificial features like date and weather that influence fluctuations are incorporated. Additionally, AutoEncoder and Principal Component Analysis (PCA) are used to extract load data features. Finally, feature engineering methods are used to select highly correlated inputs, enhancing model learning and interpretability. Simulation results confirm the proposed method significantly improves prediction accuracy compared to traditional industrial park short-term forecasting methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI