SwinHR: Hemodynamic-powered hierarchical vision transformer for breast tumor segmentation

计算机科学 分割 人工智能 磁共振成像 乳腺癌 模式识别(心理学) 机器学习 计算机视觉 癌症 放射科 医学 内科学
作者
Zhihe Zhao,Siyao Du,Zeyan Xu,Zhi Yin,Xiaomei Huang,Xin Huang,Chinting Wong,Yanting Liang,Jing Shen,Jianlin Wu,Jinrong Qu,Lina Zhang,Yanfen Cui,Ying Wang,Leonard Wee,André Dekker,Chu Han,Zaiyi Liu,Zhenwei Shi,Changhong Liang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107939-107939 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.107939
摘要

Accurate and automated segmentation of breast tumors in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a critical role in computer-aided diagnosis and treatment of breast cancer. However, this task is challenging, due to random variation in tumor sizes, shapes, appearances, and blurred boundaries of tumors caused by inherent heterogeneity of breast cancer. Moreover, the presence of ill-posed artifacts in DCE-MRI further complicate the process of tumor region annotation. To address the challenges above, we propose a scheme (named SwinHR) integrating prior DCE-MRI knowledge and temporal-spatial information of breast tumors. The prior DCE-MRI knowledge refers to hemodynamic information extracted from multiple DCE-MRI phases, which can provide pharmacokinetics information to describe metabolic changes of the tumor cells over the scanning time. The Swin Transformer with hierarchical re-parameterization large kernel architecture (H-RLK) can capture long-range dependencies within DCE-MRI while maintaining computational efficiency by a shifted window-based self-attention mechanism. The use of H-RLK can extract high-level features with a wider receptive field, which can make the model capture contextual information at different levels of abstraction. Extensive experiments are conducted in large-scale datasets to validate the effectiveness of our proposed SwinHR scheme, demonstrating its superiority over recent state-of-the-art segmentation methods. Also, a subgroup analysis split by MRI scanners, field strength, and tumor size is conducted to verify its generalization. The source code is released on (https://github.com/GDPHMediaLab/SwinHR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助nietongle采纳,获得10
1秒前
GsunW完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助zgnh采纳,获得10
1秒前
1秒前
2秒前
斯文败类应助tayyy采纳,获得10
2秒前
2秒前
2秒前
Winston完成签到,获得积分10
2秒前
3秒前
东方羽之佳完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
大方蜡烛发布了新的文献求助10
4秒前
专注夏寒完成签到,获得积分10
4秒前
南方白芝麻胡完成签到,获得积分10
4秒前
姚玲完成签到,获得积分10
5秒前
厚德载物完成签到,获得积分10
6秒前
兰粥拉面应助无心的安青采纳,获得10
6秒前
6秒前
小李发布了新的文献求助10
6秒前
顾矜应助leekk采纳,获得10
7秒前
Qinghen发布了新的文献求助10
8秒前
刘shuchang发布了新的文献求助10
8秒前
英吉利25发布了新的文献求助30
8秒前
9秒前
Loong完成签到,获得积分10
9秒前
喜悦幻巧完成签到,获得积分10
9秒前
9秒前
西窗雪完成签到,获得积分10
10秒前
10秒前
Mavis发布了新的文献求助10
10秒前
10秒前
秘密发布了新的文献求助10
10秒前
10秒前
星辰大海应助小李采纳,获得10
11秒前
科研通AI6应助悦耳逍遥采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429316
求助须知:如何正确求助?哪些是违规求助? 4542743
关于积分的说明 14182778
捐赠科研通 4460720
什么是DOI,文献DOI怎么找? 2445823
邀请新用户注册赠送积分活动 1437000
关于科研通互助平台的介绍 1414164