SwinHR: Hemodynamic-powered hierarchical vision transformer for breast tumor segmentation

计算机科学 分割 人工智能 磁共振成像 乳腺癌 模式识别(心理学) 机器学习 计算机视觉 癌症 放射科 医学 内科学
作者
Zhihe Zhao,Siyao Du,Zeyan Xu,Zhi Yin,Xiaomei Huang,Xin Huang,Chinting Wong,Yanting Liang,Jing Shen,Jianlin Wu,Jinrong Qu,Lina Zhang,Yanfen Cui,Ying Wang,Leonard Wee,André Dekker,Chu Han,Zaiyi Liu,Zhenwei Shi,Changhong Liang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107939-107939 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.107939
摘要

Accurate and automated segmentation of breast tumors in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a critical role in computer-aided diagnosis and treatment of breast cancer. However, this task is challenging, due to random variation in tumor sizes, shapes, appearances, and blurred boundaries of tumors caused by inherent heterogeneity of breast cancer. Moreover, the presence of ill-posed artifacts in DCE-MRI further complicate the process of tumor region annotation. To address the challenges above, we propose a scheme (named SwinHR) integrating prior DCE-MRI knowledge and temporal-spatial information of breast tumors. The prior DCE-MRI knowledge refers to hemodynamic information extracted from multiple DCE-MRI phases, which can provide pharmacokinetics information to describe metabolic changes of the tumor cells over the scanning time. The Swin Transformer with hierarchical re-parameterization large kernel architecture (H-RLK) can capture long-range dependencies within DCE-MRI while maintaining computational efficiency by a shifted window-based self-attention mechanism. The use of H-RLK can extract high-level features with a wider receptive field, which can make the model capture contextual information at different levels of abstraction. Extensive experiments are conducted in large-scale datasets to validate the effectiveness of our proposed SwinHR scheme, demonstrating its superiority over recent state-of-the-art segmentation methods. Also, a subgroup analysis split by MRI scanners, field strength, and tumor size is conducted to verify its generalization. The source code is released on (https://github.com/GDPHMediaLab/SwinHR).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗栗发布了新的文献求助10
刚刚
高贵秋柳完成签到,获得积分10
刚刚
刚刚
zhong完成签到,获得积分10
1秒前
亦犹未进发布了新的文献求助10
1秒前
丰富胡萝卜完成签到,获得积分20
1秒前
小马甲应助阔达的双双采纳,获得10
1秒前
连仁兄发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
李爱国应助amin采纳,获得10
3秒前
zpy完成签到,获得积分10
3秒前
风筝有风发布了新的文献求助10
4秒前
高贵秋柳发布了新的文献求助10
5秒前
5秒前
6秒前
雨眠发布了新的文献求助10
7秒前
曹紫微完成签到,获得积分10
7秒前
Orange应助ddnishi采纳,获得10
7秒前
等乙天发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
mia发布了新的文献求助20
10秒前
明明发布了新的文献求助10
11秒前
科研通AI2S应助幸福老六采纳,获得10
12秒前
13秒前
科研助理发布了新的文献求助10
13秒前
13秒前
14秒前
酷波er应助风筝有风采纳,获得10
15秒前
SciGPT应助sun采纳,获得10
15秒前
花佚狐发布了新的文献求助10
15秒前
郭大杠完成签到 ,获得积分10
15秒前
柚子应助老北京采纳,获得10
15秒前
蒋j发布了新的文献求助10
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300