SwinHR: Hemodynamic-powered hierarchical vision transformer for breast tumor segmentation

计算机科学 分割 人工智能 磁共振成像 乳腺癌 模式识别(心理学) 机器学习 计算机视觉 癌症 放射科 医学 内科学
作者
Zhihe Zhao,Siyao Du,Zeyan Xu,Zhi Yin,Xiaomei Huang,Xin Huang,Chinting Wong,Yanting Liang,Jing Shen,Jianlin Wu,Jinrong Qu,Lina Zhang,Yanfen Cui,Ying Wang,Leonard Wee,André Dekker,Chu Han,Zaiyi Liu,Zhenwei Shi,Changhong Liang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107939-107939 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.107939
摘要

Accurate and automated segmentation of breast tumors in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a critical role in computer-aided diagnosis and treatment of breast cancer. However, this task is challenging, due to random variation in tumor sizes, shapes, appearances, and blurred boundaries of tumors caused by inherent heterogeneity of breast cancer. Moreover, the presence of ill-posed artifacts in DCE-MRI further complicate the process of tumor region annotation. To address the challenges above, we propose a scheme (named SwinHR) integrating prior DCE-MRI knowledge and temporal-spatial information of breast tumors. The prior DCE-MRI knowledge refers to hemodynamic information extracted from multiple DCE-MRI phases, which can provide pharmacokinetics information to describe metabolic changes of the tumor cells over the scanning time. The Swin Transformer with hierarchical re-parameterization large kernel architecture (H-RLK) can capture long-range dependencies within DCE-MRI while maintaining computational efficiency by a shifted window-based self-attention mechanism. The use of H-RLK can extract high-level features with a wider receptive field, which can make the model capture contextual information at different levels of abstraction. Extensive experiments are conducted in large-scale datasets to validate the effectiveness of our proposed SwinHR scheme, demonstrating its superiority over recent state-of-the-art segmentation methods. Also, a subgroup analysis split by MRI scanners, field strength, and tumor size is conducted to verify its generalization. The source code is released on (https://github.com/GDPHMediaLab/SwinHR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
小马甲应助温柔的海安采纳,获得10
2秒前
优雅的沛春完成签到 ,获得积分10
4秒前
x971017完成签到,获得积分10
4秒前
5秒前
lily发布了新的文献求助10
5秒前
乖猫要努力应助李锐采纳,获得10
6秒前
ddj完成签到 ,获得积分10
6秒前
斯文明杰发布了新的文献求助10
6秒前
6秒前
More完成签到,获得积分20
7秒前
婷婷完成签到,获得积分10
7秒前
10秒前
YDX发布了新的文献求助10
10秒前
CipherSage应助SJY采纳,获得10
11秒前
NoobMasterZYF完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI2S应助李锐采纳,获得10
12秒前
知许解夏应助李锐采纳,获得10
12秒前
乖猫要努力应助李锐采纳,获得10
12秒前
SYLH应助李锐采纳,获得10
12秒前
SYLH应助李锐采纳,获得10
12秒前
SYLH应助李锐采纳,获得10
12秒前
乖猫要努力应助李锐采纳,获得30
12秒前
13秒前
13秒前
罗永昊完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助斯文明杰采纳,获得10
14秒前
情怀应助怕黑的莫茗采纳,获得30
15秒前
细心老头发布了新的文献求助10
15秒前
17秒前
罗永昊发布了新的文献求助10
17秒前
追寻访曼发布了新的文献求助10
19秒前
20秒前
21秒前
XHH1994发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824