SwinHR: Hemodynamic-powered hierarchical vision transformer for breast tumor segmentation

计算机科学 分割 人工智能 磁共振成像 乳腺癌 模式识别(心理学) 机器学习 计算机视觉 癌症 放射科 医学 内科学
作者
Zhihe Zhao,Siyao Du,Zeyan Xu,Zhi Yin,Xiaomei Huang,Xin Huang,Chinting Wong,Yanting Liang,Jing Shen,Jianlin Wu,Jinrong Qu,Lina Zhang,Yanfen Cui,Ying Wang,Leonard Wee,André Dekker,Chu Han,Zaiyi Liu,Zhenwei Shi,Changhong Liang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107939-107939 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.107939
摘要

Accurate and automated segmentation of breast tumors in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a critical role in computer-aided diagnosis and treatment of breast cancer. However, this task is challenging, due to random variation in tumor sizes, shapes, appearances, and blurred boundaries of tumors caused by inherent heterogeneity of breast cancer. Moreover, the presence of ill-posed artifacts in DCE-MRI further complicate the process of tumor region annotation. To address the challenges above, we propose a scheme (named SwinHR) integrating prior DCE-MRI knowledge and temporal-spatial information of breast tumors. The prior DCE-MRI knowledge refers to hemodynamic information extracted from multiple DCE-MRI phases, which can provide pharmacokinetics information to describe metabolic changes of the tumor cells over the scanning time. The Swin Transformer with hierarchical re-parameterization large kernel architecture (H-RLK) can capture long-range dependencies within DCE-MRI while maintaining computational efficiency by a shifted window-based self-attention mechanism. The use of H-RLK can extract high-level features with a wider receptive field, which can make the model capture contextual information at different levels of abstraction. Extensive experiments are conducted in large-scale datasets to validate the effectiveness of our proposed SwinHR scheme, demonstrating its superiority over recent state-of-the-art segmentation methods. Also, a subgroup analysis split by MRI scanners, field strength, and tumor size is conducted to verify its generalization. The source code is released on (https://github.com/GDPHMediaLab/SwinHR).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助刘述采纳,获得10
1秒前
和谐砖家发布了新的文献求助10
1秒前
fang发布了新的文献求助10
1秒前
欢喜可愁完成签到 ,获得积分10
2秒前
纯纯小白完成签到,获得积分10
2秒前
3秒前
alc完成签到,获得积分10
3秒前
无心的钢铁侠完成签到,获得积分10
3秒前
summing发布了新的文献求助10
3秒前
bkagyin应助路人采纳,获得10
4秒前
陈明升完成签到,获得积分20
4秒前
5秒前
刘述完成签到,获得积分10
5秒前
研友_VZG7GZ应助小茗同学采纳,获得10
5秒前
辰扞完成签到,获得积分20
6秒前
WWW完成签到,获得积分10
6秒前
爆米花应助Henry采纳,获得10
6秒前
冬青完成签到,获得积分10
6秒前
6秒前
星星完成签到 ,获得积分10
7秒前
7秒前
8秒前
qian发布了新的文献求助10
9秒前
五五五发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
9秒前
大个应助研友_8yRY0L采纳,获得10
9秒前
lucas发布了新的文献求助10
10秒前
10秒前
延胡索应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
李健应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913