计算机科学
分割
人工智能
磁共振成像
乳腺癌
模式识别(心理学)
机器学习
计算机视觉
癌症
放射科
医学
内科学
作者
Zhihe Zhao,Siyao Du,Zeyan Xu,Zhi Yin,Xiaomei Huang,Xin Huang,Chinting Wong,Yanting Liang,Jing Shen,Jianlin Wu,Jinrong Qu,Lina Zhang,Yanfen Cui,Ying Wang,Leonard Wee,André Dekker,Chu Han,Zaiyi Liu,Zhenwei Shi,Changhong Liang
标识
DOI:10.1016/j.compbiomed.2024.107939
摘要
Accurate and automated segmentation of breast tumors in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a critical role in computer-aided diagnosis and treatment of breast cancer. However, this task is challenging, due to random variation in tumor sizes, shapes, appearances, and blurred boundaries of tumors caused by inherent heterogeneity of breast cancer. Moreover, the presence of ill-posed artifacts in DCE-MRI further complicate the process of tumor region annotation. To address the challenges above, we propose a scheme (named SwinHR) integrating prior DCE-MRI knowledge and temporal-spatial information of breast tumors. The prior DCE-MRI knowledge refers to hemodynamic information extracted from multiple DCE-MRI phases, which can provide pharmacokinetics information to describe metabolic changes of the tumor cells over the scanning time. The Swin Transformer with hierarchical re-parameterization large kernel architecture (H-RLK) can capture long-range dependencies within DCE-MRI while maintaining computational efficiency by a shifted window-based self-attention mechanism. The use of H-RLK can extract high-level features with a wider receptive field, which can make the model capture contextual information at different levels of abstraction. Extensive experiments are conducted in large-scale datasets to validate the effectiveness of our proposed SwinHR scheme, demonstrating its superiority over recent state-of-the-art segmentation methods. Also, a subgroup analysis split by MRI scanners, field strength, and tumor size is conducted to verify its generalization. The source code is released on (https://github.com/GDPHMediaLab/SwinHR).
科研通智能强力驱动
Strongly Powered by AbleSci AI