SwinHR: Hemodynamic-powered hierarchical vision transformer for breast tumor segmentation

计算机科学 分割 人工智能 磁共振成像 乳腺癌 模式识别(心理学) 机器学习 计算机视觉 癌症 放射科 医学 内科学
作者
Zhihe Zhao,Siyao Du,Zeyan Xu,Zhi Yin,Xiaomei Huang,Xin Huang,Chinting Wong,Yanting Liang,Jing Shen,Jianlin Wu,Jinrong Qu,Lina Zhang,Yanfen Cui,Ying Wang,Leonard Wee,André Dekker,Chu Han,Zaiyi Liu,Zhenwei Shi,Changhong Liang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107939-107939 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.107939
摘要

Accurate and automated segmentation of breast tumors in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a critical role in computer-aided diagnosis and treatment of breast cancer. However, this task is challenging, due to random variation in tumor sizes, shapes, appearances, and blurred boundaries of tumors caused by inherent heterogeneity of breast cancer. Moreover, the presence of ill-posed artifacts in DCE-MRI further complicate the process of tumor region annotation. To address the challenges above, we propose a scheme (named SwinHR) integrating prior DCE-MRI knowledge and temporal-spatial information of breast tumors. The prior DCE-MRI knowledge refers to hemodynamic information extracted from multiple DCE-MRI phases, which can provide pharmacokinetics information to describe metabolic changes of the tumor cells over the scanning time. The Swin Transformer with hierarchical re-parameterization large kernel architecture (H-RLK) can capture long-range dependencies within DCE-MRI while maintaining computational efficiency by a shifted window-based self-attention mechanism. The use of H-RLK can extract high-level features with a wider receptive field, which can make the model capture contextual information at different levels of abstraction. Extensive experiments are conducted in large-scale datasets to validate the effectiveness of our proposed SwinHR scheme, demonstrating its superiority over recent state-of-the-art segmentation methods. Also, a subgroup analysis split by MRI scanners, field strength, and tumor size is conducted to verify its generalization. The source code is released on (https://github.com/GDPHMediaLab/SwinHR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明理友琴完成签到,获得积分10
刚刚
BioRick发布了新的文献求助10
1秒前
holy发布了新的文献求助10
1秒前
pjwl完成签到 ,获得积分10
2秒前
wyw发布了新的文献求助10
4秒前
5秒前
Aza发布了新的文献求助10
5秒前
5秒前
上官若男应助张之晟采纳,获得10
6秒前
6秒前
6秒前
明理友琴发布了新的文献求助10
7秒前
8秒前
温柔安筠关注了科研通微信公众号
8秒前
9秒前
LTB发布了新的文献求助10
10秒前
烟花应助wyw采纳,获得30
10秒前
暗生崎乐发布了新的文献求助10
10秒前
hms发布了新的文献求助10
11秒前
华仔应助龚书婷采纳,获得10
12秒前
张之晟完成签到,获得积分20
14秒前
Hgybdo完成签到,获得积分10
14秒前
kingwill发布了新的文献求助30
15秒前
ZJRerrr发布了新的文献求助10
16秒前
tree完成签到,获得积分10
20秒前
21秒前
FashionBoy应助tly采纳,获得10
21秒前
green完成签到,获得积分10
22秒前
星辰大海应助JIE采纳,获得10
23秒前
23秒前
幼安k完成签到,获得积分10
23秒前
evans完成签到,获得积分10
23秒前
烟花应助667788采纳,获得10
24秒前
24秒前
Owen应助ZHXX采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
bubu11关注了科研通微信公众号
25秒前
你好完成签到 ,获得积分10
25秒前
aikeyan发布了新的文献求助10
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457360
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291813
捐赠科研通 4488514
什么是DOI,文献DOI怎么找? 2458558
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424229