Optimizing digital transformation paths for industrial clusters: Insights from a simulation

转化(遗传学) 计算机科学 数字化转型 数据科学 工业工程 万维网 工程类 化学 生物化学 基因
作者
Yuanyang Teng,Jianzhuang Zheng,Yicun Li,Dong Wu
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:200: 123170-123170 被引量:6
标识
DOI:10.1016/j.techfore.2023.123170
摘要

Digital technologies have revolutionised industrial clusters, implementing digital transformation without careful consideration can lead to higher risks and ineffective investments. However, the existing research often focuses on enterprises in a specific position, whereas the entire supply chain or end-to-end research is rarely conducted. To fill this gap, this study proposes a sectoral innovation system. It conducts a simulation model to study the digital transformation process by considering the behaviour, knowledge learning, and innovation of upstream and downstream enterprises in different cluster types. The simulation dynamically presents production and productivity changes during the transformation process of the entire industrial cluster. The results reveal that an orderly transformation path is the most effective for Marshallian clusters, whereas a simultaneous transformation works best for central satellite clusters. In addition, the social network simulation before and after the digital transformation of the two industrial clusters shows that enterprises in central-satellite clusters communicate more frequently during digital transformation, which is ultimately conducive to a better performance of the digital transformation of industrial clusters. These findings emphasise the need for tailored digital transformation strategies based on cluster type to maximise benefits, underscoring the importance of leading firms in industrial clusters. It also guides the government's industrial policy formulation and management enlightenment regarding the digital transformation of enterprises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ABC完成签到,获得积分10
刚刚
刚刚
田様应助宝贝采纳,获得10
1秒前
大个应助酷酷煎饼采纳,获得10
1秒前
炙热晓露完成签到,获得积分10
2秒前
赛赛完成签到,获得积分10
2秒前
田様应助有机会吗采纳,获得10
3秒前
1111发布了新的文献求助10
3秒前
爱学习完成签到,获得积分10
3秒前
乐乐乐乐乐乐应助cugwzr采纳,获得10
3秒前
大橘子完成签到,获得积分10
4秒前
4秒前
回到原点应助樊念烟采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
hulin_zjxu完成签到,获得积分10
8秒前
9秒前
陈梓发布了新的文献求助10
9秒前
风中乘风发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
完美世界应助cugwzr采纳,获得10
11秒前
12秒前
王wangWANG发布了新的文献求助10
12秒前
ZEXAL发布了新的文献求助10
12秒前
kanaty发布了新的文献求助30
12秒前
宝贝发布了新的文献求助10
12秒前
方方公主完成签到 ,获得积分10
13秒前
13秒前
深情安青应助早上好采纳,获得10
14秒前
昏睡的眼神完成签到 ,获得积分10
14秒前
14秒前
15秒前
可靠的蜗牛完成签到 ,获得积分10
15秒前
小张呢好完成签到,获得积分10
15秒前
无奈的信封完成签到,获得积分10
16秒前
zj完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655