Optimizing digital transformation paths for industrial clusters: Insights from a simulation

转化(遗传学) 计算机科学 数字化转型 数据科学 工业工程 万维网 工程类 化学 生物化学 基因
作者
Yuanyang Teng,Jianzhuang Zheng,Yicun Li,Dong Wu
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:200: 123170-123170 被引量:4
标识
DOI:10.1016/j.techfore.2023.123170
摘要

Digital technologies have revolutionised industrial clusters, implementing digital transformation without careful consideration can lead to higher risks and ineffective investments. However, the existing research often focuses on enterprises in a specific position, whereas the entire supply chain or end-to-end research is rarely conducted. To fill this gap, this study proposes a sectoral innovation system. It conducts a simulation model to study the digital transformation process by considering the behaviour, knowledge learning, and innovation of upstream and downstream enterprises in different cluster types. The simulation dynamically presents production and productivity changes during the transformation process of the entire industrial cluster. The results reveal that an orderly transformation path is the most effective for Marshallian clusters, whereas a simultaneous transformation works best for central satellite clusters. In addition, the social network simulation before and after the digital transformation of the two industrial clusters shows that enterprises in central-satellite clusters communicate more frequently during digital transformation, which is ultimately conducive to a better performance of the digital transformation of industrial clusters. These findings emphasise the need for tailored digital transformation strategies based on cluster type to maximise benefits, underscoring the importance of leading firms in industrial clusters. It also guides the government's industrial policy formulation and management enlightenment regarding the digital transformation of enterprises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空曲发布了新的文献求助10
1秒前
细心的雨灵完成签到,获得积分10
2秒前
coco在纠结完成签到,获得积分10
3秒前
徐继军完成签到 ,获得积分10
4秒前
充电宝应助Puddingo采纳,获得10
5秒前
1257应助wlq采纳,获得10
8秒前
我是老大应助空曲采纳,获得10
10秒前
fujun0095发布了新的文献求助20
10秒前
11秒前
11秒前
13秒前
Kyt发布了新的文献求助10
17秒前
jessicazhong发布了新的文献求助10
17秒前
18秒前
bluse033发布了新的文献求助10
19秒前
19秒前
21秒前
21秒前
领导范儿应助红豆高采纳,获得10
24秒前
OlivRe发布了新的文献求助30
24秒前
25秒前
医学生发布了新的文献求助10
25秒前
25秒前
27秒前
Halo驳回了Yuwei应助
28秒前
bluse033完成签到,获得积分10
28秒前
LINING应助风风采纳,获得10
29秒前
柠檬精翠翠完成签到 ,获得积分10
30秒前
30秒前
30秒前
31秒前
CodeCraft应助lee采纳,获得10
33秒前
33秒前
月月发布了新的文献求助10
33秒前
Xx发布了新的文献求助10
34秒前
沐舒发布了新的文献求助10
34秒前
桐安发布了新的文献求助10
34秒前
34秒前
喝水变瘦发布了新的文献求助10
34秒前
42秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Angio-based 3DStent for evaluation of stent expansion 500
Populist Discourse: Recasting Populism Research 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2993352
求助须知:如何正确求助?哪些是违规求助? 2654013
关于积分的说明 7178440
捐赠科研通 2289144
什么是DOI,文献DOI怎么找? 1213452
版权声明 592683
科研通“疑难数据库(出版商)”最低求助积分说明 592345