Optimization of vacuum belt drying process conditions for Citri Reticulatae Pericarpium using genetic algorithm and particle swarm optimization

粒子群优化 算法 过程(计算) 数学优化 多群优化 计算机科学 遗传算法 粒子(生态学) 工艺工程 生物系统 数学 材料科学 工程类 生物 生态学 操作系统
作者
Xinlong Liu,Qilong Xue,Zhouyou Wu,Yukang Cheng,Yang Yu,Zhen Li
出处
期刊:Drying Technology [Taylor & Francis]
卷期号:42 (2): 296-306 被引量:2
标识
DOI:10.1080/07373937.2023.2288407
摘要

Vacuum Belt Drying (VBD) is commonly applied in the pharmaceutical industry and its optimization is often required for different product processing. This study focuses on the optimization of process parameters for vacuum belt drying of Citri Reticulatae Pericarpium using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). VBD equipment control parameters are numerous, and lack of mature commissioning methods. Optimizing VBD process parameters can improve production efficiency and reduce production costs. The objective function was based on a numerical model of VBD. This model accurately predicts the moisture content variation during the drying process of Citri Reticulatae Pericarpium with a mean squared error (MSE) value of 0.0353. After that, the model introduces the formula for the income-expenditure ratio as the industrial optimization objective. The multi-objective problem of high yield and low energy consumption was transformed into a single objective by minimizing the income-expenditure ratio. After process optimization, the income-expenditure ratio was reduced by 3.80 and 4.02% compared to the original process conditions. A comparison between GA and PSO optimization results revealed that PSO performed better in optimizing the VBD process conditions, demonstrating superior convergence speed and optimization outcomes. In conclusion, this research emphasizes the effectiveness of utilizing GA and PSO algorithms to optimize process parameters for VBD. The algorithms provide optimized process conditions for VBD, replacing traditional empirical adjustment methods. This study contributes to the advancement of VBD technology by providing a systematic approach for optimizing process parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chenying发布了新的文献求助10
1秒前
虚心幼翠完成签到,获得积分10
2秒前
3秒前
n张黎明完成签到,获得积分10
3秒前
CodeCraft应助11点一定睡觉采纳,获得10
4秒前
bkagyin应助感动煎饼采纳,获得10
4秒前
感动清炎发布了新的文献求助10
5秒前
Estella完成签到,获得积分10
5秒前
6秒前
6秒前
香蕉觅云应助研友_祝鬼神采纳,获得10
6秒前
老金金完成签到 ,获得积分10
6秒前
杨文志完成签到,获得积分10
7秒前
7秒前
专一的青槐完成签到,获得积分10
9秒前
虚心的宛亦完成签到,获得积分10
10秒前
skmksd完成签到,获得积分10
10秒前
Angsent发布了新的文献求助10
11秒前
11秒前
zhzike发布了新的文献求助100
12秒前
结实的山菡应助Estella采纳,获得10
12秒前
hyperthermal1发布了新的文献求助30
12秒前
地精术士完成签到,获得积分10
15秒前
16秒前
xiaochao完成签到,获得积分10
16秒前
16秒前
18秒前
pennlee完成签到,获得积分10
18秒前
半柚应助chenying采纳,获得10
19秒前
19秒前
19秒前
21秒前
折磊磊发布了新的文献求助10
21秒前
21秒前
22秒前
社会主义接班人完成签到 ,获得积分10
23秒前
怕黑傲珊发布了新的文献求助20
24秒前
完美的凝蝶完成签到 ,获得积分10
26秒前
xiaoruixue完成签到,获得积分10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737910
求助须知:如何正确求助?哪些是违规求助? 3281470
关于积分的说明 10025533
捐赠科研通 2998170
什么是DOI,文献DOI怎么找? 1645135
邀请新用户注册赠送积分活动 782612
科研通“疑难数据库(出版商)”最低求助积分说明 749843