已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FFCSLT: A Deep Learning Model for Traffic Police Hand Gesture Recognition Using Surface Electromyographic Signals

手势 计算机科学 手势识别 深度学习 人工智能 语音识别 肌电图 计算机视觉 物理医学与康复 医学
作者
Wenxuan Ma,Ge Song,Qingtian Zeng,Hongxin Zhang,Minghao Zou,Ziqi Zhao
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 13640-13655
标识
DOI:10.1109/jsen.2024.3371588
摘要

Using surface electromyography (sEMG) signals for gesture recognition can significantly improve the effects of recognition. Therefore, this article proposed a CNN-SE-LSTM-TCN feature fusion network (FFCSLT) for traffic police gesture recognition based on the characteristics of sEMG signals. First, an acquisition system with six-channel sEMG sensors was developed for acquiring sEMG signals during human movement, and the dataset of hand gestures of traffic police (TPG) was constructed, which contains a total of 36000 sets of data. Then, a squeeze-and-excitation (SE) block with adaptive channel weighting was added on top of the depthwise separable convolutional network (DSCN) to enhance the spatial features between each channel in the FFCSLT network. Meanwhile, a temporal convolutional network (TCN) was integrated into the long short-term memory (LSTM) to extract additional temporal features in the FFCSLT network. Finally, the comparing experiments with other methods were taken on two datasets: the self-collected TPG dataset, widely used sEMG Sensor Data Ninapro DB1. The experimental results show that our model has an accuracy of 98.89% on the TPG dataset and 96.52% on the Ninapro DB1 dataset, which is 2.22% and 0.75% higher than suboptimal methods, respectively. To further validate the proposed network, we also performed a variety of ablation studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity发布了新的文献求助10
1秒前
daihq3发布了新的文献求助10
2秒前
深情安青应助123采纳,获得10
2秒前
2秒前
传奇3应助yy超爱看文献采纳,获得10
3秒前
CKK发布了新的文献求助10
5秒前
accept发布了新的文献求助10
5秒前
杉进完成签到 ,获得积分10
5秒前
11秒前
可爱的函函应助adinike采纳,获得10
12秒前
accept完成签到,获得积分10
13秒前
16秒前
嗯哼应助daihq3采纳,获得20
17秒前
汉堡包应助相悦采纳,获得10
17秒前
受伤雁荷发布了新的文献求助10
18秒前
23秒前
AAA111122完成签到,获得积分10
24秒前
25秒前
TJN完成签到 ,获得积分10
26秒前
窦房结完成签到 ,获得积分10
27秒前
秋梨膏完成签到,获得积分10
27秒前
壮观的谷冬完成签到 ,获得积分10
28秒前
28秒前
adinike发布了新的文献求助10
28秒前
ylf发布了新的文献求助10
30秒前
飞儿随缘发布了新的文献求助10
32秒前
koitoyu完成签到,获得积分10
33秒前
你好好好完成签到,获得积分10
34秒前
乐乐完成签到 ,获得积分10
34秒前
35秒前
笨笨西牛完成签到 ,获得积分10
38秒前
Aiden发布了新的文献求助10
39秒前
欣慰煎饼发布了新的文献求助10
39秒前
微笑的砖头完成签到,获得积分10
40秒前
41秒前
42秒前
43秒前
飞儿随缘完成签到,获得积分10
43秒前
43秒前
xiaomeng完成签到 ,获得积分10
44秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234378
求助须知:如何正确求助?哪些是违规求助? 2880736
关于积分的说明 8216789
捐赠科研通 2548319
什么是DOI,文献DOI怎么找? 1377665
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623304