Joint Task Offloading and Resource Allocation in Aerial-Terrestrial UAV Networks With Edge and Fog Computing for Post-Disaster Rescue

计算机科学 边缘计算 移动边缘计算 资源配置 任务(项目管理) 资源管理(计算) GSM演进的增强数据速率 分布式计算 软件部署 移动设备 实时计算 计算机网络 人工智能 操作系统 经济 管理
作者
Geng Sun,Long He,Zemin Sun,Qingqing Wu,Shuang Liang,Jiahui Li,Dusit Niyato,Victor C. M. Leung
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 8582-8600 被引量:17
标识
DOI:10.1109/tmc.2024.3350886
摘要

Unmanned aerial vehicles (UAVs) are playing an increasingly important role in assisting fast-response post-disaster rescue due to their fast deployment, flexible mobility, and low cost. However, UAVs face the challenges of limited battery capacity and computing resources, which could shorten the expected flight endurance of UAVs and increase the rescue response delay during performing mission-critical tasks. To address these challenges, we first present a three-layer post-disaster rescue computing architecture by leveraging the aerial-terrestrial edge capabilities of mobile edge computing (MEC) and vehicle fog computing (VFC), which consists of a vehicle fog layer, a UAV client layer, and a UAV edge layer. Moreover, we formulate a joint task offloading and resource allocation optimization problem (JTRAOP) with the aim of maximizing the time-average system utility. Since the formulated JTRAOP is proved to be NP-hard, we propose an MEC-VFC-aided task offloading and resource allocation (MVTORA) approach, which consists of a game theoretic algorithm for task offloading decision, a convex optimization-based algorithm for MEC resource allocation, and an evolutionary computation-based hybrid algorithm for VFC resource allocation. Simulation results validate that the proposed approach can achieve superior system performance compared to alternative approaches, especially under heavy system workloads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助元谷雪采纳,获得10
刚刚
忧虑的靖巧完成签到 ,获得积分10
1秒前
卓卓卓卓完成签到,获得积分20
2秒前
3秒前
shencheng完成签到,获得积分10
3秒前
3秒前
3秒前
qiii发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
风清扬发布了新的文献求助10
7秒前
情怀应助负责的方盒采纳,获得10
7秒前
望TIAN完成签到,获得积分10
8秒前
WWW完成签到,获得积分10
8秒前
9秒前
汉堡包应助欢喜的祥采纳,获得10
9秒前
xiaoyu完成签到,获得积分10
9秒前
10秒前
打打应助王艺霖采纳,获得10
12秒前
12秒前
cll完成签到 ,获得积分10
13秒前
14秒前
14秒前
NBSHR完成签到,获得积分10
15秒前
orixero应助顺利的豌豆采纳,获得10
15秒前
15秒前
面壁思过发布了新的文献求助10
16秒前
16秒前
YH完成签到,获得积分10
16秒前
机智跳跳糖完成签到,获得积分10
16秒前
宇文半邪发布了新的文献求助10
18秒前
18秒前
19秒前
Mic应助星期日不上发条采纳,获得30
19秒前
www完成签到,获得积分10
20秒前
NBSHR发布了新的文献求助10
20秒前
熊熊发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233