亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

One-Class Neural Network With Directed Statistics Pooling for Spoofing Speech Detection

计算机科学 Softmax函数 欺骗攻击 过度拟合 人工智能 联营 机器学习 特征(语言学) 人工神经网络 辍学(神经网络) 模式识别(心理学) 语音识别 计算机网络 语言学 哲学
作者
Guoyuan Lin,Weiqi Luo,Da Luo,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2581-2593 被引量:9
标识
DOI:10.1109/tifs.2024.3352429
摘要

Existing deep learning models for spoofing speech detection often struggle to effectively generalize to unseen spoofing attacks that were not present during the training stage. Moreover, the presence of class imbalance further compounds this issue by biasing the learning process towards seen attack samples. To address these challenges, we present an innovative end-to-end model called One-Class Neural Network with Directed Statistics Pooling (OCNet-DSP). Our model incorporates a feature cropping operation to attenuate high-frequency components, mitigating the risk of overfitting. Additionally, leveraging the time-frequency characteristics of speech signals, we introduce a directed statistics pooling layer that extracts more effective features for distinguishing between bonafide and spoofing classes. We also propose the Threshold One-class Softmax loss, which mitigates class imbalance by reducing the optimization weight of spoofing samples during training. Extensive comparative results demonstrate that the proposed model outperforms all existing single models, achieving an equal error rate of 0.44% and a minimum detection cost function of 0.0145 for the ASVspoof 2019 logical access database. Moreover, the proposed ensemble version, which accommodates speech inputs of varying lengths in each submodel, maintains state-of-the-art performance among reproducible ensemble models. Additionally, numerous ablation experiments, along with a cross-dataset experiment, are conducted to validate the rationality and effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Iron_five完成签到 ,获得积分10
7秒前
李治稳发布了新的文献求助10
10秒前
独指蜗牛完成签到 ,获得积分10
11秒前
是真灵还是机灵完成签到 ,获得积分10
17秒前
所所应助刘大米采纳,获得10
17秒前
18秒前
xiaa0618完成签到 ,获得积分10
20秒前
Esperanza完成签到,获得积分10
22秒前
23秒前
魔幻安南完成签到 ,获得积分10
26秒前
英姑应助腼腆的峻熙采纳,获得10
36秒前
39秒前
刘大米发布了新的文献求助10
44秒前
51秒前
刘大米完成签到,获得积分10
56秒前
奇奇怪怪发布了新的文献求助10
58秒前
奇奇怪怪完成签到,获得积分10
1分钟前
大大彬发布了新的文献求助20
1分钟前
迷你的靖雁完成签到,获得积分10
1分钟前
lwm不想看文献完成签到 ,获得积分10
1分钟前
1分钟前
廖庭毅完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
1分钟前
刻苦的小土豆完成签到 ,获得积分10
1分钟前
dong应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
白白完成签到,获得积分10
1分钟前
1分钟前
顺利道消完成签到,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
2分钟前
Lucas应助粗心的新之采纳,获得10
2分钟前
舒心谷雪完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994995
求助须知:如何正确求助?哪些是违规求助? 3535103
关于积分的说明 11267066
捐赠科研通 3274866
什么是DOI,文献DOI怎么找? 1806498
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809764