亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

One-Class Neural Network With Directed Statistics Pooling for Spoofing Speech Detection

计算机科学 Softmax函数 欺骗攻击 过度拟合 人工智能 联营 机器学习 特征(语言学) 人工神经网络 辍学(神经网络) 模式识别(心理学) 语音识别 计算机网络 语言学 哲学
作者
Guoyuan Lin,Weiqi Luo,Da Luo,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2581-2593 被引量:9
标识
DOI:10.1109/tifs.2024.3352429
摘要

Existing deep learning models for spoofing speech detection often struggle to effectively generalize to unseen spoofing attacks that were not present during the training stage. Moreover, the presence of class imbalance further compounds this issue by biasing the learning process towards seen attack samples. To address these challenges, we present an innovative end-to-end model called One-Class Neural Network with Directed Statistics Pooling (OCNet-DSP). Our model incorporates a feature cropping operation to attenuate high-frequency components, mitigating the risk of overfitting. Additionally, leveraging the time-frequency characteristics of speech signals, we introduce a directed statistics pooling layer that extracts more effective features for distinguishing between bonafide and spoofing classes. We also propose the Threshold One-class Softmax loss, which mitigates class imbalance by reducing the optimization weight of spoofing samples during training. Extensive comparative results demonstrate that the proposed model outperforms all existing single models, achieving an equal error rate of 0.44% and a minimum detection cost function of 0.0145 for the ASVspoof 2019 logical access database. Moreover, the proposed ensemble version, which accommodates speech inputs of varying lengths in each submodel, maintains state-of-the-art performance among reproducible ensemble models. Additionally, numerous ablation experiments, along with a cross-dataset experiment, are conducted to validate the rationality and effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Licyan完成签到,获得积分10
3秒前
17秒前
19秒前
容若发布了新的文献求助10
23秒前
24秒前
32秒前
上官若男应助爱听歌笑寒采纳,获得10
35秒前
jimmy_bytheway完成签到,获得积分0
39秒前
40秒前
44秒前
容若发布了新的文献求助10
44秒前
46秒前
重庆森林发布了新的文献求助10
50秒前
容若发布了新的文献求助10
1分钟前
重庆森林完成签到,获得积分20
1分钟前
jinyue完成签到 ,获得积分10
1分钟前
huxuehong完成签到 ,获得积分10
1分钟前
三金发布了新的文献求助200
1分钟前
1分钟前
怕孤独的白凡完成签到 ,获得积分10
1分钟前
JamesPei应助爱听歌笑寒采纳,获得10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
激情的冷风完成签到,获得积分20
2分钟前
Docgyj完成签到 ,获得积分0
2分钟前
2分钟前
容若发布了新的文献求助10
2分钟前
搜集达人应助陶1122采纳,获得10
2分钟前
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
2分钟前
小马甲应助爱听歌笑寒采纳,获得10
2分钟前
爱听歌笑寒完成签到,获得积分10
2分钟前
2分钟前
容若发布了新的文献求助10
2分钟前
2分钟前
深情安青应助容若采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611282
求助须知:如何正确求助?哪些是违规求助? 4016845
关于积分的说明 12435757
捐赠科研通 3698687
什么是DOI,文献DOI怎么找? 2039615
邀请新用户注册赠送积分活动 1072446
科研通“疑难数据库(出版商)”最低求助积分说明 956127