One-Class Neural Network With Directed Statistics Pooling for Spoofing Speech Detection

计算机科学 Softmax函数 欺骗攻击 过度拟合 人工智能 联营 机器学习 特征(语言学) 人工神经网络 辍学(神经网络) 模式识别(心理学) 语音识别 计算机网络 语言学 哲学
作者
Guoyuan Lin,Weiqi Luo,Da Luo,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2581-2593 被引量:9
标识
DOI:10.1109/tifs.2024.3352429
摘要

Existing deep learning models for spoofing speech detection often struggle to effectively generalize to unseen spoofing attacks that were not present during the training stage. Moreover, the presence of class imbalance further compounds this issue by biasing the learning process towards seen attack samples. To address these challenges, we present an innovative end-to-end model called One-Class Neural Network with Directed Statistics Pooling (OCNet-DSP). Our model incorporates a feature cropping operation to attenuate high-frequency components, mitigating the risk of overfitting. Additionally, leveraging the time-frequency characteristics of speech signals, we introduce a directed statistics pooling layer that extracts more effective features for distinguishing between bonafide and spoofing classes. We also propose the Threshold One-class Softmax loss, which mitigates class imbalance by reducing the optimization weight of spoofing samples during training. Extensive comparative results demonstrate that the proposed model outperforms all existing single models, achieving an equal error rate of 0.44% and a minimum detection cost function of 0.0145 for the ASVspoof 2019 logical access database. Moreover, the proposed ensemble version, which accommodates speech inputs of varying lengths in each submodel, maintains state-of-the-art performance among reproducible ensemble models. Additionally, numerous ablation experiments, along with a cross-dataset experiment, are conducted to validate the rationality and effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Re发布了新的文献求助10
刚刚
汉堡包应助老10采纳,获得10
1秒前
SIRT1发布了新的文献求助80
2秒前
专注的雪完成签到 ,获得积分10
2秒前
大模型应助666采纳,获得30
3秒前
3秒前
高高的天亦完成签到 ,获得积分10
3秒前
学术小王子完成签到,获得积分10
4秒前
4秒前
滕侑林发布了新的文献求助10
4秒前
小蘑菇应助mao采纳,获得10
5秒前
5秒前
搜集达人应助Re采纳,获得10
6秒前
木穹完成签到,获得积分0
6秒前
7秒前
周俊丞完成签到 ,获得积分10
7秒前
李健应助听月眠采纳,获得10
8秒前
sdl完成签到,获得积分10
8秒前
9秒前
曾小荣完成签到,获得积分20
9秒前
guozizi发布了新的文献求助30
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
儒雅的秋凌完成签到 ,获得积分10
12秒前
邵大王完成签到,获得积分10
13秒前
13秒前
天天快乐应助Candy采纳,获得40
14秒前
14秒前
14秒前
滕侑林完成签到,获得积分10
15秒前
隐形曼青应助停騮_ 采纳,获得10
16秒前
真实的板凳完成签到,获得积分20
17秒前
miao完成签到,获得积分10
18秒前
陈楠完成签到,获得积分10
18秒前
紫气莲莲完成签到,获得积分10
18秒前
哈哈哈完成签到,获得积分10
18秒前
研究生end应助sunyanghu369采纳,获得20
21秒前
23秒前
yzm完成签到,获得积分10
24秒前
761997580完成签到 ,获得积分10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5152991
求助须知:如何正确求助?哪些是违规求助? 4348656
关于积分的说明 13539917
捐赠科研通 4191048
什么是DOI,文献DOI怎么找? 2298619
邀请新用户注册赠送积分活动 1298725
关于科研通互助平台的介绍 1243618