One-Class Neural Network With Directed Statistics Pooling for Spoofing Speech Detection

计算机科学 Softmax函数 欺骗攻击 过度拟合 人工智能 联营 机器学习 特征(语言学) 人工神经网络 辍学(神经网络) 模式识别(心理学) 语音识别 计算机网络 语言学 哲学
作者
Guoyuan Lin,Weiqi Luo,Da Luo,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2581-2593 被引量:9
标识
DOI:10.1109/tifs.2024.3352429
摘要

Existing deep learning models for spoofing speech detection often struggle to effectively generalize to unseen spoofing attacks that were not present during the training stage. Moreover, the presence of class imbalance further compounds this issue by biasing the learning process towards seen attack samples. To address these challenges, we present an innovative end-to-end model called One-Class Neural Network with Directed Statistics Pooling (OCNet-DSP). Our model incorporates a feature cropping operation to attenuate high-frequency components, mitigating the risk of overfitting. Additionally, leveraging the time-frequency characteristics of speech signals, we introduce a directed statistics pooling layer that extracts more effective features for distinguishing between bonafide and spoofing classes. We also propose the Threshold One-class Softmax loss, which mitigates class imbalance by reducing the optimization weight of spoofing samples during training. Extensive comparative results demonstrate that the proposed model outperforms all existing single models, achieving an equal error rate of 0.44% and a minimum detection cost function of 0.0145 for the ASVspoof 2019 logical access database. Moreover, the proposed ensemble version, which accommodates speech inputs of varying lengths in each submodel, maintains state-of-the-art performance among reproducible ensemble models. Additionally, numerous ablation experiments, along with a cross-dataset experiment, are conducted to validate the rationality and effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助呆萌芙蓉采纳,获得10
1秒前
farmer发布了新的文献求助30
1秒前
1秒前
biubiu完成签到,获得积分10
1秒前
贰卷发布了新的文献求助20
1秒前
1秒前
1秒前
酷波er应助格格采纳,获得10
2秒前
2秒前
未来可期发布了新的文献求助10
2秒前
2秒前
张豪杰发布了新的文献求助10
2秒前
玖Nine发布了新的文献求助10
2秒前
Rebecca发布了新的文献求助10
2秒前
huihui发布了新的文献求助10
3秒前
3秒前
小齐发文章完成签到,获得积分10
3秒前
3秒前
boge5633发布了新的文献求助10
3秒前
4秒前
Jj7完成签到,获得积分10
4秒前
4秒前
铁马冰河入梦来完成签到 ,获得积分10
5秒前
8R60d8应助quanjiazhi采纳,获得10
5秒前
6秒前
aaa1完成签到 ,获得积分10
6秒前
lili发布了新的文献求助10
6秒前
天下无贼发布了新的文献求助10
6秒前
香蕉觅云应助79采纳,获得10
6秒前
唠叨的亿先完成签到,获得积分20
6秒前
11完成签到,获得积分10
6秒前
儒雅沛蓝完成签到,获得积分10
7秒前
66发布了新的文献求助10
7秒前
7秒前
Jenny完成签到,获得积分10
7秒前
leo完成签到,获得积分10
7秒前
7秒前
饼哥发布了新的文献求助10
7秒前
7秒前
温柔樱桃完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270592
求助须知:如何正确求助?哪些是违规求助? 4428746
关于积分的说明 13785589
捐赠科研通 4306594
什么是DOI,文献DOI怎么找? 2363149
邀请新用户注册赠送积分活动 1358858
关于科研通互助平台的介绍 1321740