One-Class Neural Network With Directed Statistics Pooling for Spoofing Speech Detection

计算机科学 Softmax函数 欺骗攻击 过度拟合 人工智能 联营 机器学习 特征(语言学) 人工神经网络 辍学(神经网络) 模式识别(心理学) 语音识别 计算机网络 语言学 哲学
作者
Guoyuan Lin,Weiqi Luo,Da Luo,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2581-2593 被引量:2
标识
DOI:10.1109/tifs.2024.3352429
摘要

Existing deep learning models for spoofing speech detection often struggle to effectively generalize to unseen spoofing attacks that were not present during the training stage. Moreover, the presence of class imbalance further compounds this issue by biasing the learning process towards seen attack samples. To address these challenges, we present an innovative end-to-end model called One-Class Neural Network with Directed Statistics Pooling (OCNet-DSP). Our model incorporates a feature cropping operation to attenuate high-frequency components, mitigating the risk of overfitting. Additionally, leveraging the time-frequency characteristics of speech signals, we introduce a directed statistics pooling layer that extracts more effective features for distinguishing between bonafide and spoofing classes. We also propose the Threshold One-class Softmax loss, which mitigates class imbalance by reducing the optimization weight of spoofing samples during training. Extensive comparative results demonstrate that the proposed model outperforms all existing single models, achieving an equal error rate of 0.44% and a minimum detection cost function of 0.0145 for the ASVspoof 2019 logical access database. Moreover, the proposed ensemble version, which accommodates speech inputs of varying lengths in each submodel, maintains state-of-the-art performance among reproducible ensemble models. Additionally, numerous ablation experiments, along with a cross-dataset experiment, are conducted to validate the rationality and effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小武哥完成签到 ,获得积分10
刚刚
ding应助Kk采纳,获得10
2秒前
an完成签到,获得积分10
2秒前
啦啦啦发布了新的文献求助10
3秒前
威武怀蕊发布了新的文献求助10
3秒前
4秒前
6秒前
隐形曼青应助黙宇循光采纳,获得10
7秒前
8秒前
一粒米发布了新的文献求助40
9秒前
彭于晏应助zz采纳,获得10
9秒前
9秒前
10秒前
慕青应助迅速谷冬采纳,获得10
12秒前
13秒前
13秒前
14秒前
14秒前
Colin关注了科研通微信公众号
15秒前
15秒前
T012发布了新的文献求助10
17秒前
黙宇循光发布了新的文献求助10
18秒前
彭于晏应助叶95采纳,获得10
20秒前
20秒前
xzDoctor发布了新的文献求助10
20秒前
23秒前
秀丽的正豪完成签到 ,获得积分10
23秒前
zhangxinan完成签到,获得积分10
23秒前
24秒前
T012完成签到,获得积分10
25秒前
搜集达人应助飞不动采纳,获得10
25秒前
蜂蜜柚子完成签到 ,获得积分10
28秒前
迅速谷冬发布了新的文献求助10
29秒前
云阳完成签到 ,获得积分10
29秒前
bkagyin应助啦啦啦采纳,获得10
30秒前
31秒前
Wangnono完成签到,获得积分10
32秒前
32秒前
gan发布了新的文献求助10
33秒前
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787779
关于积分的说明 7783154
捐赠科研通 2443843
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954