One-Class Neural Network With Directed Statistics Pooling for Spoofing Speech Detection

计算机科学 Softmax函数 欺骗攻击 过度拟合 人工智能 联营 机器学习 特征(语言学) 人工神经网络 辍学(神经网络) 模式识别(心理学) 语音识别 计算机网络 语言学 哲学
作者
Guoyuan Lin,Weiqi Luo,Da Luo,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2581-2593 被引量:9
标识
DOI:10.1109/tifs.2024.3352429
摘要

Existing deep learning models for spoofing speech detection often struggle to effectively generalize to unseen spoofing attacks that were not present during the training stage. Moreover, the presence of class imbalance further compounds this issue by biasing the learning process towards seen attack samples. To address these challenges, we present an innovative end-to-end model called One-Class Neural Network with Directed Statistics Pooling (OCNet-DSP). Our model incorporates a feature cropping operation to attenuate high-frequency components, mitigating the risk of overfitting. Additionally, leveraging the time-frequency characteristics of speech signals, we introduce a directed statistics pooling layer that extracts more effective features for distinguishing between bonafide and spoofing classes. We also propose the Threshold One-class Softmax loss, which mitigates class imbalance by reducing the optimization weight of spoofing samples during training. Extensive comparative results demonstrate that the proposed model outperforms all existing single models, achieving an equal error rate of 0.44% and a minimum detection cost function of 0.0145 for the ASVspoof 2019 logical access database. Moreover, the proposed ensemble version, which accommodates speech inputs of varying lengths in each submodel, maintains state-of-the-art performance among reproducible ensemble models. Additionally, numerous ablation experiments, along with a cross-dataset experiment, are conducted to validate the rationality and effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
opp完成签到,获得积分10
刚刚
杨扬完成签到 ,获得积分10
刚刚
清都山水郎完成签到,获得积分10
刚刚
左丘芷卉完成签到,获得积分10
刚刚
yang完成签到,获得积分10
刚刚
毁灭世界发布了新的文献求助10
1秒前
梦月完成签到,获得积分10
1秒前
好眠哈密瓜完成签到,获得积分10
1秒前
1秒前
slsdy发布了新的文献求助10
2秒前
xu发布了新的文献求助10
2秒前
文慧发布了新的文献求助10
2秒前
2秒前
科研通AI6应助dove采纳,获得10
2秒前
2秒前
幸福晓夏发布了新的文献求助10
3秒前
浮游应助11采纳,获得10
3秒前
玻璃外的世界完成签到,获得积分10
3秒前
chris完成签到,获得积分10
3秒前
3秒前
大个应助种花兔采纳,获得10
3秒前
科研通AI2S应助元谷雪采纳,获得10
4秒前
勤劳溪灵完成签到,获得积分10
4秒前
靓丽的战斗机完成签到,获得积分10
4秒前
结实的妙梦完成签到,获得积分10
4秒前
小杭76应助ocean12138采纳,获得10
5秒前
liulu完成签到 ,获得积分10
5秒前
积极的尔竹完成签到,获得积分10
5秒前
ccccccp完成签到,获得积分10
5秒前
爱喝蜜桃乌龙完成签到,获得积分10
6秒前
毁灭世界完成签到 ,获得积分10
6秒前
研友_Z7XY28完成签到,获得积分10
6秒前
耳朵儿歌完成签到,获得积分10
6秒前
Cherish完成签到,获得积分10
6秒前
你好完成签到,获得积分10
6秒前
荷叶边边头完成签到,获得积分10
7秒前
青蛙十字绣00700完成签到,获得积分10
8秒前
风和日丽完成签到,获得积分10
8秒前
董仁杰完成签到,获得积分20
8秒前
最好是完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326254
求助须知:如何正确求助?哪些是违规求助? 4466503
关于积分的说明 13897045
捐赠科研通 4358844
什么是DOI,文献DOI怎么找? 2394304
邀请新用户注册赠送积分活动 1387823
关于科研通互助平台的介绍 1358676