A Systematic Evaluation of Machine Learning–Based Biomarkers for Major Depressive Disorder

重性抑郁障碍 神经影像学 队列 医学 萧条(经济学) 人口 双相情感障碍 精神科 部分各向异性 内科学 心理学 临床心理学 磁共振弥散成像 磁共振成像 心情 环境卫生 放射科 经济 宏观经济学
作者
Nils R. Winter,Julian Blanke,Ramona Leenings,Jan Ernsting,L. Fisch,Kelvin Sarink,Carlotta Barkhau,Daniel Emden,Katharina Thiel,Kira Flinkenflügel,Alexandra Winter,Janik Goltermann,Susanne Meinert,Katharina Dohm,Jonathan Repple,Marius Gruber,Elisabeth J. Leehr,Nils Opel,Dominik Grotegerd,Ronny Redlich,Robert Nitsch,Jochen Bauer,Walter Heindel,Joachim Groß,Benjamin Risse,Till F. M. Andlauer,Andreas J. Forstner,Markus M. Nöthen,Marcella Rietschel,Stefan G. Hofmann,Julia‐Katharina Pfarr,Lea Teutenberg,Paula Usemann,Florian Thomas‐Odenthal,Adrian Wroblewski,Katharina Brosch,Frederike Stein,Andreas Jansen,Hamidreza Jamalabadi,Nina Alexander,Benjamin Straube,Igor Nenadić,Tilo Kircher,Udo Dannlowski,Tim Hahn
出处
期刊:JAMA Psychiatry [American Medical Association]
被引量:17
标识
DOI:10.1001/jamapsychiatry.2023.5083
摘要

Importance Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure Patients with MDD and healthy controls. Main Outcome and Measure Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker—even under extensive ML optimization in a large sample of diagnosed patients—could be identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助able采纳,获得10
刚刚
鱼尾雯关注了科研通微信公众号
1秒前
zyx发布了新的文献求助30
1秒前
悠然发布了新的文献求助10
1秒前
1秒前
2秒前
伍秋望完成签到,获得积分10
2秒前
英俊鼠标发布了新的文献求助10
2秒前
3秒前
孤独翠柏发布了新的文献求助10
3秒前
宇麦达发布了新的文献求助10
3秒前
4秒前
琪琪琪完成签到,获得积分10
5秒前
yangkeke发布了新的文献求助10
5秒前
尉迟念波发布了新的文献求助10
7秒前
xiaoxx发布了新的文献求助10
8秒前
寒冷的雨发布了新的文献求助10
8秒前
嘉人完成签到 ,获得积分10
8秒前
孤梦落雨发布了新的文献求助10
8秒前
fwm发布了新的文献求助10
8秒前
Jasper应助psj采纳,获得10
9秒前
12秒前
风筝完成签到 ,获得积分10
12秒前
洋洋洋完成签到,获得积分10
13秒前
13秒前
13秒前
孤独翠柏完成签到,获得积分10
13秒前
尉迟念波完成签到,获得积分20
14秒前
14秒前
zhuanghj5完成签到 ,获得积分20
15秒前
Alina1874完成签到,获得积分10
15秒前
华仔应助Xhh采纳,获得10
16秒前
zhuanghj5发布了新的文献求助10
16秒前
17秒前
英俊鼠标发布了新的文献求助10
17秒前
仙笛童神完成签到,获得积分10
17秒前
中中完成签到,获得积分10
18秒前
19秒前
cy完成签到,获得积分20
20秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136067
求助须知:如何正确求助?哪些是违规求助? 2786953
关于积分的说明 7779912
捐赠科研通 2443071
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625244
版权声明 600870