亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced transfer learning with data augmentation

计算机科学 过度拟合 学习迁移 人工智能 机器学习 一般化 领域(数学分析) 标记数据 训练集 试验数据 深度学习 感应转移 人工神经网络 机器人学习 机器人 程序设计语言 数学分析 数学 移动机器人
作者
Jianjun Su,Xuejiao Yu,Xiru Wang,Zhijin Wang,Guoqing Chao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107602-107602 被引量:53
标识
DOI:10.1016/j.engappai.2023.107602
摘要

Traditional machine learning methods require the assumption that training and test data are drawn from the same distribution, which proves challenging in real-world applications. Moreover, deep learning models require a substantial amount of labeled data for training in classification tasks and limited samples may lead to overfitting. In many real-world scenarios, there is an insufficient supply of labeled samples within the target domain for learning. Transfer learning offers an effective solution, allowing knowledge from a source domain to be transferred to a target domain. Additionally, data augmentation enhances model generalization by increasing data samples, particularly beneficial when dealing with limited target domain data. In this paper, we synergistically enhance the model's performance on classification tasks by integrating transfer learning techniques with a data augmentation strategy. By conducting numerous experiments across various datasets, we verified the effectiveness of our proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌仔完成签到,获得积分10
5秒前
萌仔发布了新的文献求助10
13秒前
Mei完成签到,获得积分10
15秒前
23秒前
小金完成签到,获得积分20
23秒前
稳重的小刺猬完成签到,获得积分10
25秒前
30秒前
林林发布了新的文献求助10
35秒前
桐桐应助科研通管家采纳,获得10
35秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
BowieHuang应助科研通管家采纳,获得20
36秒前
小金发布了新的文献求助10
36秒前
丽君完成签到,获得积分20
43秒前
量子星尘发布了新的文献求助10
43秒前
YJL完成签到 ,获得积分10
47秒前
哩哩完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
空城发布了新的文献求助10
1分钟前
andrele发布了新的文献求助10
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
柒年啵啵完成签到 ,获得积分10
1分钟前
张志超发布了新的文献求助10
1分钟前
CodeCraft应助儒雅的城采纳,获得80
2分钟前
Fein_W完成签到,获得积分10
2分钟前
willlee完成签到 ,获得积分10
2分钟前
paradox完成签到 ,获得积分10
2分钟前
天天快乐应助标致的怀绿采纳,获得10
2分钟前
李爱国应助Cmqq采纳,获得10
2分钟前
Akim应助peng采纳,获得10
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得30
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
Canonical_SMILES完成签到 ,获得积分10
2分钟前
儒雅的城发布了新的文献求助80
2分钟前
大朋友发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685512
关于积分的说明 14838542
捐赠科研通 4670527
什么是DOI,文献DOI怎么找? 2538202
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904