Learning Spatiotemporal Brain Dynamics in Adolescents via Multimodal MEG and fMRI Data Fusion Using Joint Tensor/Matrix Decomposition

脑磁图 功能磁共振成像 计算机科学 人工智能 模式识别(心理学) 大脑活动与冥想 神经科学 心理学 脑电图
作者
Irina Belyaeva,Ben Gabrielson,Yu‐Ping Wang,Tony W. Wilson,Vince D. Calhoun,Julia M. Stephen,Tülay Adalı
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tbme.2024.3364704
摘要

Objective: Brain function is understood to be regulated by complex spatiotemporal dynamics, and can be characterized by a combination of observed brain response patterns in time and space. Magnetoencephalography (MEG), with its high temporal resolution, and functional magnetic resonance imaging (fMRI), with its high spatial resolution, are complementary imaging techniques with great potential to reveal information about spatiotemporal brain dynamics. Hence, the complementary nature of these imaging techniques holds much promise to study brain function in time and space, especially when the two data types are allowed to fully interact. Methods: We employed coupled tensor/matrix factorization (CMTF) to extract joint latent components in the form of unique spatiotemporal brain patterns that can be used to study brain development and function on a millisecond scale. Results: Using the CMTF model, we extracted distinct brain patterns that revealed fine-grained spatiotemporal brain dynamics and typical sensory processing pathways informative of high-level cognitive functions in healthy adolescents. The components extracted from multimodal tensor fusion possessed better discriminative ability between high- and low-performance subjects than single-modality data-driven models. Conclusion: Multimodal tensor fusion successfully identified spatiotemporal brain dynamics of brain function and produced unique components with high discriminatory power. Significance: The CMTF model is a promising tool for high-order, multimodal data fusion that exploits the functional resolution of MEG and fMRI, and provides a comprehensive picture of the developing brain in time and space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
所所应助许子健采纳,获得10
刚刚
刚刚
三木发布了新的文献求助10
刚刚
嘉1612完成签到,获得积分10
1秒前
科研小白发布了新的文献求助10
1秒前
1秒前
2秒前
天天快乐应助牛轧唐采纳,获得30
2秒前
Chouvikin完成签到,获得积分10
2秒前
fan发布了新的文献求助10
2秒前
3秒前
3秒前
NexusExplorer应助zuizui采纳,获得10
4秒前
4秒前
愉快浩宇完成签到,获得积分10
4秒前
英俊的铭应助噗噗xie采纳,获得10
5秒前
wenwen发布了新的文献求助10
5秒前
5秒前
李婧薇发布了新的文献求助10
5秒前
5秒前
karry完成签到,获得积分10
6秒前
沉静小萱发布了新的文献求助10
6秒前
王多鱼完成签到,获得积分20
6秒前
橙子快跑完成签到,获得积分10
8秒前
田一发布了新的文献求助10
8秒前
xfq发布了新的文献求助10
8秒前
8秒前
8秒前
pluto应助营养小杨采纳,获得10
9秒前
科研通AI2S应助大美美采纳,获得10
9秒前
摆烂小子发布了新的文献求助10
9秒前
搜集达人应助karry采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
yangting完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958563
求助须知:如何正确求助?哪些是违规求助? 3504871
关于积分的说明 11120709
捐赠科研通 3236153
什么是DOI,文献DOI怎么找? 1788666
邀请新用户注册赠送积分活动 871279
科研通“疑难数据库(出版商)”最低求助积分说明 802646