6.8 A 256×192-Pixel 30fps Automotive Direct Time-of-Flight LiDAR Using 8× Current-Integrating-Based TIA, Hybrid Pulse Position/Width Converter, and Intensity/CNN-Guided 3D Inpainting

修补 职位(财务) 汽车工业 脉冲宽度调制 像素 脉搏(音乐) 强度(物理) 计算机科学 电流(流体) 激光雷达 材料科学 人工智能 物理 光学 工程类 图像(数学) 电气工程 航空航天工程 电信 财务 探测器 经济 电压
作者
Chaorui Zou,Yaozhong Ou,Yan Zhu,Rui P. Martins,Chi‐Hang Chan,Minglei Zhang
标识
DOI:10.1109/isscc49657.2024.10454461
摘要

Sensors with high-quality imaging and a 200m-level detection range are essential for Level 4 autonomous driving and beyond. Sensor fusions present immense promise for system robustness to improve driving safety and reliability, while LiDAR stands as a prospective candidate as it offers both high image resolution and depth perception with time-of-flight (ToF). Strong background light contributes the most noise power to >100m LiDAR systems, which drowns signals with conventional transimpedance amplifiers (TIAs) [2]. Pixel accumulating can improve SNR [5] but blurs the image when at a 200m distance. Histogramming [4] enhances the image but deteriorates the frames per second (fps). Both the blurry images and low fps prevent LiDAR from responding to the sudden appearance of vehicles and pedestrians, restricting its capability in autonomous driving. Moreover, reducing the number of LiDARs helps control cost, which nonetheless necessitates a LiDAR capable of both long-range (LR) and short-range (SR) measurements [2]. High-accuracy SR distance measurement is essential for parking assistance, pushing the precision burdens on the TDC and the walk-error compensation. Convolutional neural networks (CNNs) have demonstrated their enormous potential for image resolution upscaling and inpainting [6], particularly as the computing capacity of the vehicles has undergone substantial improvement. In this paper: 1) a high-gain current-integrating-based TIA (CI-TIA) is developed with competitive energy and noise efficiency, which inherits an adaptive background light-compensation feature, thus capable of eliminating the histogramming operations for higher fps; 2) a hybrid pulse position and width converter (PPWC) provides both time and intensity information, while the intensity compensates the walk errors in time intrinsically; the PPWC together with the CI-TIA produce a 50ps (7.5mm) time resolution; and 3) an intensity-guided window-size-adapting accumulation (IGWAA) algorithm improves the accumulation efficiency and accuracy, while a CNN-guided 3D inpainting network further generates missing information. Put together, these result in a 30fps direct ToF LiDAR with a pixel resolution of 256×192 that achieves consistent <1cm distance error and <0.1% precision for up to 240m measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
WZ0904发布了新的文献求助10
4秒前
狂野静曼完成签到 ,获得积分10
5秒前
武映易完成签到 ,获得积分10
7秒前
zzz发布了新的文献求助10
8秒前
9秒前
大蒜味酸奶钊完成签到 ,获得积分10
9秒前
鱼宇纸完成签到 ,获得积分10
9秒前
LEE完成签到,获得积分20
9秒前
9秒前
Ava应助无限的绿真采纳,获得10
11秒前
小马甲应助xiongdi521采纳,获得10
11秒前
科研通AI5应助陶醉觅夏采纳,获得200
14秒前
憨鬼憨切发布了新的文献求助10
14秒前
14秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
16秒前
17秒前
18秒前
hh应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
Eva完成签到,获得积分10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
清爽老九应助科研通管家采纳,获得20
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
greenPASS666发布了新的文献求助10
19秒前
涂欣桐应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
secbox完成签到,获得积分10
20秒前
刘哈哈发布了新的文献求助30
20秒前
xyzdmmm完成签到,获得积分10
21秒前
21秒前
欢呼冰岚发布了新的文献求助30
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849