Energy Absorption Strategy in Biological and Bioinspired Tubular and Lamellar Structures

层状结构 吸收(声学) 材料科学 能量(信号处理) 纳米技术 生化工程 复合材料 工程类 物理 量子力学
作者
Boyuan Feng,Jiaming Zhong,Yunchen Fu,Wen Yang,Zezhou Li,Jiawei Bao,Yangwei Wang,Huamin Zhou,Robert O. Ritchie,Xudong Liang,Wei Huang
标识
DOI:10.2139/ssrn.4755486
摘要

Energy absorption capability is critical in biological and engineering materials, particularly when subjected to extreme compressive and impact loading. The cellular structure is recognized for its effectiveness in energy absorption, dissipating energy through material plasticity and structural collapsing, leading to significant densification. In the current work, we demonstrate how natural biological materials, like horns and hooves, control crack generation and propagation through lamellar and tubular structural designs. Interestingly, these natural materials achieve substantial energy absorption without creating large void volumes, relying on generating microcracks and interfaces. Inspired by these biological tissues, lamellar and tubular structures were fabricated via multi-material polymer 3D printing techniques. The resulting bioinspired structures exhibit an impressive energy absorption density of ~18.75 kJ•kg-1, comparable to the performance of metal foams and bioinspired honeycomb structures. Introducing soft-hard interfaces in lamellar and tubules notably enhances impact energy absorption by approximately 167% compared to solid structures printed with a single material. The bioinspired structures maintain structural integrity even under high strain rate impacts of around 2000 s-1, showcasing resistance to deformation and catastrophic failure. This bioinspired approach allows for a combined energy absorption capability in quasi-static compression and high strain-rate impact scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勇敢的孙宇宙完成签到,获得积分10
刚刚
1秒前
decade发布了新的文献求助10
2秒前
加菲丰丰应助xia采纳,获得10
2秒前
小二郎应助junfeiwang采纳,获得10
3秒前
3秒前
4秒前
6秒前
Charles发布了新的文献求助10
8秒前
白羊完成签到,获得积分20
8秒前
郑思雨发布了新的文献求助10
9秒前
风中子轩完成签到,获得积分10
9秒前
张小馨完成签到 ,获得积分10
10秒前
iacademic应助decade采纳,获得10
10秒前
11秒前
Orange应助任性雨柏采纳,获得10
13秒前
wave完成签到,获得积分10
14秒前
14秒前
白羊发布了新的文献求助10
15秒前
cocolu应助爱中医采纳,获得10
16秒前
16秒前
17秒前
SciGPT应助lzl采纳,获得30
18秒前
19秒前
19秒前
20秒前
踏实玉米发布了新的文献求助10
20秒前
华国锋完成签到,获得积分10
21秒前
22秒前
罗静完成签到,获得积分10
22秒前
22秒前
24秒前
26秒前
Cina应助小心翼翼采纳,获得10
26秒前
博修发布了新的文献求助10
26秒前
Yuan发布了新的文献求助10
27秒前
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
良辰应助科研通管家采纳,获得10
27秒前
123应助科研通管家采纳,获得20
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316498
求助须知:如何正确求助?哪些是违规求助? 2948286
关于积分的说明 8539762
捐赠科研通 2624145
什么是DOI,文献DOI怎么找? 1435889
科研通“疑难数据库(出版商)”最低求助积分说明 665703
邀请新用户注册赠送积分活动 651654