Reinforcement learning for in silico determination of adsorbate—substrate structures

强化学习 计算机科学 化学 人工智能 人工神经网络
作者
Maicon Pierre Lourenço,Jiří Hostaš,Colin Bellinger,Alain Tchagang,Dennis R. Salahub
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:45 (15): 1289-1302
标识
DOI:10.1002/jcc.27322
摘要

Abstract Reinforcement learning (RL) methods have helped to define the state of the art in the field of modern artificial intelligence, mostly after the breakthrough involving AlphaGo and the discovery of novel algorithms. In this work, we present a RL method, based on Q‐learning, for the structural determination of adsorbate@substrate models in silico, where the minimization of the energy landscape resulting from adsorbate interactions with a substrate is made by actions on states (translations and rotations) chosen from an agent's policy. The proposed RL method is implemented in an early version of the reinforcement learning software for materials design and discovery (RLMaterial), developed in Python3.x. RLMaterial interfaces with deMon2k, DFTB+, ORCA, and Quantum Espresso codes to compute the adsorbate@substrate energies. The RL method was applied for the structural determination of (i) the amino acid glycine and (ii) 2‐amino‐acetaldehyde, both interacting with a boron nitride (BN) monolayer, (iii) host‐guest interactions between phenylboronic acid and β ‐cyclodextrin and (iv) ammonia on naphthalene. Density functional tight binding calculations were used to build the complex search surfaces with a reasonably low computational cost for systems (i)–(iii) and DFT for system (iv). Artificial neural network and gradient boosting regression techniques were employed to approximate the Q‐matrix or Q‐table for better decision making (policy) on next actions. Finally, we have developed a transfer‐learning protocol within the RL framework that allows learning from one chemical system and transferring the experience to another, as well as from different DFT or DFTB levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我我我发布了新的文献求助10
刚刚
青山见秋发布了新的文献求助10
1秒前
HCLonely应助ruby采纳,获得10
1秒前
幸福娃娃完成签到,获得积分20
1秒前
凤凰之玉完成签到 ,获得积分10
2秒前
无聊的蚊完成签到,获得积分10
3秒前
科研小天才完成签到,获得积分10
3秒前
研友_QLX7x8完成签到,获得积分10
4秒前
土豆土豆完成签到,获得积分10
4秒前
怡心亭完成签到 ,获得积分10
4秒前
4秒前
北风完成签到,获得积分10
4秒前
5秒前
6秒前
yyy应助迷人嫣然采纳,获得10
7秒前
Peter_Zhu完成签到,获得积分10
7秒前
KD发布了新的文献求助10
9秒前
眞_完成签到 ,获得积分10
9秒前
李爱国应助无聊的蚊采纳,获得10
10秒前
10秒前
wyq发布了新的文献求助10
10秒前
黄风小圣完成签到 ,获得积分10
11秒前
11秒前
12秒前
Varonica完成签到,获得积分10
12秒前
13秒前
Tammy完成签到,获得积分10
13秒前
14秒前
Orange应助凌问晴采纳,获得10
16秒前
16秒前
迷人幻波发布了新的文献求助10
16秒前
minmin发布了新的文献求助30
17秒前
所所应助曹沛岚采纳,获得10
17秒前
Chocolate发布了新的文献求助10
17秒前
17秒前
ric发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
12545完成签到,获得积分10
18秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3216712
求助须知:如何正确求助?哪些是违规求助? 2865932
关于积分的说明 8149628
捐赠科研通 2532410
什么是DOI,文献DOI怎么找? 1365747
科研通“疑难数据库(出版商)”最低求助积分说明 644620
邀请新用户注册赠送积分活动 617526