An explainable predictive maintenance strategy for multi-fault diagnosis of rotating machines using multi-sensor data fusion

断层(地质) 融合 计算机科学 传感器融合 可靠性工程 数据挖掘 人工智能 工程类 地质学 语言学 哲学 地震学
作者
Shreyas Gawde,Shruti Patil,Satish Kumar,Pooja Kamat,Ketan Kotecha
出处
期刊:Decision Analytics Journal [Elsevier]
卷期号:10: 100425-100425 被引量:2
标识
DOI:10.1016/j.dajour.2024.100425
摘要

Industry 4.0 denotes smart manufacturing, where rotating machines predominantly serve as the fundamental components in production sectors. The primary duty of maintenance engineers is to upkeep these vital machines, aiming to reduce unexpected halts and extend their operational lifespan. The most recent development in smart maintenance is Predictive Maintenance (PdM). Due to the diversity of machinery and the diverse behaviour of each machine in different fault conditions, the most challenging task in predictive maintenance is to detect the fault, diagnose the type of fault, and explain why a particular fault is predicted. This study proposes an effective Explainable Predictive Maintenance strategy considering (1) test setup building, (2) low-cost Fast Fourier Transform (FFT) raw data using multiple sensors, (3) multi-sensor data fusion, (4) comparing various multi-class classification algorithms, (5) analysis of cases concerning multi-sensor versus single sensor and multi-location versus single location, and (6) explainable predictive maintenance. Quantitative results from this study reveal a remarkable multi-fault detection accuracy and multiple fault type classification, with the highest accuracy of 100%. Furthermore, multi-sensor data fusion significantly outperforms single-sensor approaches, demonstrating an enhancement in fault prediction accuracy of all models. Using Explainable Artificial Intelligence methods contributes to the interpretability of fault diagnoses, making it a critical advancement in Intelligent Manufacturing and Predictive Maintenance in Industry 4.0. The study's novelty is using Explainable Artificial Intelligence (Local Interpretable Model Agnostic Explanation (LIME) and Random Forest) for multi-fault classification of rotating machines using multi-sensor data fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的幼菱完成签到 ,获得积分20
刚刚
李爱国应助Jey采纳,获得10
刚刚
汉堡包应助活力的果汁采纳,获得10
刚刚
xiuxiu酱完成签到,获得积分10
1秒前
丘比特应助出海流浪采纳,获得30
1秒前
ZDM6094发布了新的文献求助10
1秒前
Swift168_YY发布了新的文献求助30
2秒前
隐城发布了新的文献求助10
2秒前
MRIlingMei发布了新的文献求助10
2秒前
Ranch0完成签到,获得积分10
3秒前
001完成签到,获得积分10
4秒前
王春梅完成签到,获得积分10
4秒前
4秒前
sh发布了新的文献求助10
4秒前
Hhhhhhhhhh完成签到,获得积分20
4秒前
香蕉觅云应助srz楠楠采纳,获得10
5秒前
Akim应助天冷了采纳,获得10
5秒前
bkagyin应助闫伯涵采纳,获得10
6秒前
acalii完成签到,获得积分10
6秒前
小王完成签到,获得积分10
6秒前
顾矜应助小刘采纳,获得10
7秒前
亮晶晶完成签到,获得积分10
7秒前
7秒前
小草发布了新的文献求助10
8秒前
8秒前
潇洒从彤完成签到,获得积分10
8秒前
YULIA完成签到,获得积分10
9秒前
le完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
奶油炒白菜应助fd163c采纳,获得30
11秒前
浮游应助cww采纳,获得10
11秒前
UD完成签到,获得积分10
12秒前
李健的小迷弟应助洋洋羊采纳,获得10
12秒前
哦豁发布了新的文献求助10
12秒前
立冬完成签到,获得积分10
13秒前
13秒前
13秒前
swx发布了新的文献求助10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205896
求助须知:如何正确求助?哪些是违规求助? 4384602
关于积分的说明 13653526
捐赠科研通 4242735
什么是DOI,文献DOI怎么找? 2327718
邀请新用户注册赠送积分活动 1325406
关于科研通互助平台的介绍 1277528