An explainable predictive maintenance strategy for multi-fault diagnosis of rotating machines using multi-sensor data fusion

断层(地质) 融合 计算机科学 传感器融合 可靠性工程 数据挖掘 人工智能 工程类 地质学 语言学 哲学 地震学
作者
Shreyas Gawde,Shruti Patil,Satish Kumar,Pooja Kamat,Ketan Kotecha
出处
期刊:Decision Analytics Journal [Elsevier]
卷期号:10: 100425-100425 被引量:2
标识
DOI:10.1016/j.dajour.2024.100425
摘要

Industry 4.0 denotes smart manufacturing, where rotating machines predominantly serve as the fundamental components in production sectors. The primary duty of maintenance engineers is to upkeep these vital machines, aiming to reduce unexpected halts and extend their operational lifespan. The most recent development in smart maintenance is Predictive Maintenance (PdM). Due to the diversity of machinery and the diverse behaviour of each machine in different fault conditions, the most challenging task in predictive maintenance is to detect the fault, diagnose the type of fault, and explain why a particular fault is predicted. This study proposes an effective Explainable Predictive Maintenance strategy considering (1) test setup building, (2) low-cost Fast Fourier Transform (FFT) raw data using multiple sensors, (3) multi-sensor data fusion, (4) comparing various multi-class classification algorithms, (5) analysis of cases concerning multi-sensor versus single sensor and multi-location versus single location, and (6) explainable predictive maintenance. Quantitative results from this study reveal a remarkable multi-fault detection accuracy and multiple fault type classification, with the highest accuracy of 100%. Furthermore, multi-sensor data fusion significantly outperforms single-sensor approaches, demonstrating an enhancement in fault prediction accuracy of all models. Using Explainable Artificial Intelligence methods contributes to the interpretability of fault diagnoses, making it a critical advancement in Intelligent Manufacturing and Predictive Maintenance in Industry 4.0. The study's novelty is using Explainable Artificial Intelligence (Local Interpretable Model Agnostic Explanation (LIME) and Random Forest) for multi-fault classification of rotating machines using multi-sensor data fusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静曼完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
南辞完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
lieomey完成签到,获得积分10
2秒前
沐溪完成签到,获得积分10
2秒前
依依发布了新的文献求助10
2秒前
科目三应助1111采纳,获得10
2秒前
2秒前
2秒前
斯文败类应助高贵一德采纳,获得10
3秒前
3秒前
4秒前
李小小完成签到,获得积分10
4秒前
如是之人发布了新的文献求助10
4秒前
如是之人发布了新的文献求助10
4秒前
sun完成签到,获得积分10
4秒前
4秒前
4秒前
夏天发布了新的文献求助10
4秒前
力颗咪发布了新的文献求助10
5秒前
5秒前
如是之人发布了新的文献求助10
5秒前
5秒前
123发布了新的文献求助10
5秒前
Hwchaodoctor完成签到,获得积分10
5秒前
田様应助vince采纳,获得10
5秒前
5秒前
如是之人发布了新的文献求助10
5秒前
如是之人发布了新的文献求助10
5秒前
如是之人发布了新的文献求助10
6秒前
如是之人发布了新的文献求助10
6秒前
6秒前
luckyyhy发布了新的文献求助10
6秒前
6秒前
风雅发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688