An explainable predictive maintenance strategy for multi-fault diagnosis of rotating machines using multi-sensor data fusion

断层(地质) 融合 计算机科学 传感器融合 可靠性工程 数据挖掘 人工智能 工程类 地质学 语言学 哲学 地震学
作者
Shreyas Gawde,Shruti Patil,Satish Kumar,Pooja Kamat,Ketan Kotecha
出处
期刊:Decision Analytics Journal [Elsevier]
卷期号:10: 100425-100425 被引量:2
标识
DOI:10.1016/j.dajour.2024.100425
摘要

Industry 4.0 denotes smart manufacturing, where rotating machines predominantly serve as the fundamental components in production sectors. The primary duty of maintenance engineers is to upkeep these vital machines, aiming to reduce unexpected halts and extend their operational lifespan. The most recent development in smart maintenance is Predictive Maintenance (PdM). Due to the diversity of machinery and the diverse behaviour of each machine in different fault conditions, the most challenging task in predictive maintenance is to detect the fault, diagnose the type of fault, and explain why a particular fault is predicted. This study proposes an effective Explainable Predictive Maintenance strategy considering (1) test setup building, (2) low-cost Fast Fourier Transform (FFT) raw data using multiple sensors, (3) multi-sensor data fusion, (4) comparing various multi-class classification algorithms, (5) analysis of cases concerning multi-sensor versus single sensor and multi-location versus single location, and (6) explainable predictive maintenance. Quantitative results from this study reveal a remarkable multi-fault detection accuracy and multiple fault type classification, with the highest accuracy of 100%. Furthermore, multi-sensor data fusion significantly outperforms single-sensor approaches, demonstrating an enhancement in fault prediction accuracy of all models. Using Explainable Artificial Intelligence methods contributes to the interpretability of fault diagnoses, making it a critical advancement in Intelligent Manufacturing and Predictive Maintenance in Industry 4.0. The study's novelty is using Explainable Artificial Intelligence (Local Interpretable Model Agnostic Explanation (LIME) and Random Forest) for multi-fault classification of rotating machines using multi-sensor data fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杉杉来吃完成签到,获得积分10
1秒前
1秒前
Yolen LI发布了新的文献求助10
2秒前
3秒前
3秒前
领导范儿应助邝边边采纳,获得30
3秒前
3秒前
Dulecha完成签到,获得积分10
4秒前
壮观问寒发布了新的文献求助10
4秒前
好英俊的马铃薯!完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
渊思发布了新的文献求助10
5秒前
sunshine发布了新的文献求助10
6秒前
RRRZZ完成签到,获得积分10
7秒前
吕懿发布了新的文献求助10
7秒前
酷波er应助ZG采纳,获得10
8秒前
徐橙橙发布了新的文献求助10
9秒前
Ava应助zai采纳,获得10
9秒前
AIMS完成签到,获得积分0
10秒前
10秒前
sy完成签到 ,获得积分10
10秒前
Dragon完成签到 ,获得积分10
11秒前
12秒前
Ava应助xy采纳,获得10
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
壮观问寒关注了科研通微信公众号
14秒前
15秒前
15秒前
15秒前
马路发布了新的文献求助10
16秒前
天涯赤子发布了新的文献求助10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153026
求助须知:如何正确求助?哪些是违规求助? 2804161
关于积分的说明 7857753
捐赠科研通 2461956
什么是DOI,文献DOI怎么找? 1310610
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794