Fast Video-Based Point Cloud Compression Based on Early Termination and Transformer Model

计算机科学 变压器 云计算 压缩(物理) 数据压缩 实时计算 计算机视觉 工程类 电气工程 材料科学 操作系统 电压 复合材料
作者
Yihan Wang,Yongfang Wang,Tengyao Cui,Zhijun Fang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 2336-2348
标识
DOI:10.1109/tetci.2024.3360290
摘要

Video-based Point Cloud Compression (V-PCC) was proposed by the Moving Picture Experts Group (MPEG) to standardize Point Cloud Compression (PCC). The main idea of V-PCC is to project the Dynamic Point Cloud (DPC) into auxiliary information, occupancy, geometry, and attribute videos for encoding utilizing High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), etc. Compared with the previous PCC algorithms, V-PCC has achieved a significant improvement in compression efficiency. However, it is accompanied by substantial computational complexity. To solve this problem, this paper proposes a fast V-PCC method to decrease the coding complexity. Taking into account the coding characteristic of V-PCC, the geometry and attribute maps are first classified into occupied and unoccupied blocks. Moreover, we analyze Coding Unit (CU) splitting for geometry and attribute map. Finally, we propose fast V-PCC algorithms based on early termination algorithm and transformer model, in which the early termination method is proposed for low complexity blocks in the geometry and attribute map, and the transformer model-based fast method is designed to predict the optimal CU splitting modes for the occupied block of the attribute map. The proposed algorithms are implemented with typical DPC sequences on the Test Model Category 2 (TMC2). The experimental results imply that the average time of the proposed method can significantly reduce 56.39% and 55.10% in the geometry and attribute map, respectively, with negligible Bjontegaard-Delta bitrate (BD-rate) compared with the anchor method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特忆灵完成签到,获得积分10
刚刚
caicai发布了新的文献求助10
1秒前
好困应助外向的夜梦采纳,获得10
1秒前
1秒前
1秒前
yuk完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
结构小工发布了新的文献求助10
3秒前
lyyyyyyyy发布了新的文献求助10
3秒前
涛涛完成签到,获得积分20
3秒前
李爱国应助李飞龙采纳,获得10
3秒前
Ashely发布了新的文献求助10
4秒前
顾矜应助rrrrrrun采纳,获得10
4秒前
DDD发布了新的文献求助10
4秒前
01skystriker完成签到,获得积分10
5秒前
5秒前
金乌发布了新的文献求助10
5秒前
Hello应助yyyy采纳,获得10
5秒前
Ava应助霜幕采纳,获得10
5秒前
shiyue发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
Wind应助木棉采纳,获得10
6秒前
DRDOC发布了新的文献求助10
7秒前
大个应助白诺言采纳,获得10
7秒前
朴淑芬发布了新的文献求助10
7秒前
7秒前
zm发布了新的文献求助10
7秒前
板砖机完成签到,获得积分10
7秒前
8秒前
8秒前
ZIYU发布了新的文献求助10
8秒前
9秒前
斯文败类应助caicai采纳,获得10
9秒前
Renn应助喜之郎采纳,获得10
9秒前
Xzj发布了新的文献求助10
9秒前
Akim应助屈洪娇采纳,获得10
10秒前
10秒前
思源应助愉快的莹采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444