Fast Video-Based Point Cloud Compression Based on Early Termination and Transformer Model

计算机科学 变压器 云计算 压缩(物理) 数据压缩 实时计算 计算机视觉 工程类 电气工程 材料科学 操作系统 电压 复合材料
作者
Yihan Wang,Yongfang Wang,Tengyao Cui,Zhijun Fang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 2336-2348
标识
DOI:10.1109/tetci.2024.3360290
摘要

Video-based Point Cloud Compression (V-PCC) was proposed by the Moving Picture Experts Group (MPEG) to standardize Point Cloud Compression (PCC). The main idea of V-PCC is to project the Dynamic Point Cloud (DPC) into auxiliary information, occupancy, geometry, and attribute videos for encoding utilizing High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), etc. Compared with the previous PCC algorithms, V-PCC has achieved a significant improvement in compression efficiency. However, it is accompanied by substantial computational complexity. To solve this problem, this paper proposes a fast V-PCC method to decrease the coding complexity. Taking into account the coding characteristic of V-PCC, the geometry and attribute maps are first classified into occupied and unoccupied blocks. Moreover, we analyze Coding Unit (CU) splitting for geometry and attribute map. Finally, we propose fast V-PCC algorithms based on early termination algorithm and transformer model, in which the early termination method is proposed for low complexity blocks in the geometry and attribute map, and the transformer model-based fast method is designed to predict the optimal CU splitting modes for the occupied block of the attribute map. The proposed algorithms are implemented with typical DPC sequences on the Test Model Category 2 (TMC2). The experimental results imply that the average time of the proposed method can significantly reduce 56.39% and 55.10% in the geometry and attribute map, respectively, with negligible Bjontegaard-Delta bitrate (BD-rate) compared with the anchor method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祺仔发布了新的文献求助10
1秒前
凯蒂完成签到,获得积分10
1秒前
1秒前
文献狗完成签到,获得积分10
3秒前
3秒前
想做一株草完成签到,获得积分10
3秒前
nanaki完成签到,获得积分10
7秒前
月蚀六花发布了新的文献求助10
7秒前
丰富香菇发布了新的文献求助20
9秒前
卟噜完成签到,获得积分10
12秒前
susiyiyi完成签到,获得积分10
12秒前
13秒前
meng完成签到,获得积分10
13秒前
打打应助health__up采纳,获得10
14秒前
14秒前
月蚀六花发布了新的文献求助10
19秒前
负责吃饭发布了新的文献求助10
19秒前
hty完成签到 ,获得积分10
21秒前
21秒前
祥子的骆驼完成签到,获得积分10
22秒前
阿乌大王完成签到,获得积分10
24秒前
24秒前
合适的向雁完成签到 ,获得积分10
25秒前
万能图书馆应助njusdf采纳,获得10
26秒前
26秒前
zmin发布了新的文献求助10
27秒前
28秒前
30秒前
32秒前
踏实奇异果完成签到,获得积分10
33秒前
拼搏的飞薇完成签到,获得积分10
33秒前
luoshikun完成签到,获得积分10
33秒前
QT_429完成签到 ,获得积分10
33秒前
zyqy完成签到 ,获得积分10
34秒前
月蚀六花发布了新的文献求助10
35秒前
徐徐徐徐完成签到 ,获得积分10
35秒前
猪猪1987完成签到,获得积分10
36秒前
36秒前
思源应助负责吃饭采纳,获得10
36秒前
沅宝完成签到,获得积分10
38秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464245
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057583
捐赠科研通 2747637
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696083