Fast Video-Based Point Cloud Compression Based on Early Termination and Transformer Model

计算机科学 变压器 云计算 压缩(物理) 数据压缩 实时计算 计算机视觉 工程类 电气工程 材料科学 操作系统 电压 复合材料
作者
Yihan Wang,Yongfang Wang,Tengyao Cui,Zhijun Fang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 2336-2348
标识
DOI:10.1109/tetci.2024.3360290
摘要

Video-based Point Cloud Compression (V-PCC) was proposed by the Moving Picture Experts Group (MPEG) to standardize Point Cloud Compression (PCC). The main idea of V-PCC is to project the Dynamic Point Cloud (DPC) into auxiliary information, occupancy, geometry, and attribute videos for encoding utilizing High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), etc. Compared with the previous PCC algorithms, V-PCC has achieved a significant improvement in compression efficiency. However, it is accompanied by substantial computational complexity. To solve this problem, this paper proposes a fast V-PCC method to decrease the coding complexity. Taking into account the coding characteristic of V-PCC, the geometry and attribute maps are first classified into occupied and unoccupied blocks. Moreover, we analyze Coding Unit (CU) splitting for geometry and attribute map. Finally, we propose fast V-PCC algorithms based on early termination algorithm and transformer model, in which the early termination method is proposed for low complexity blocks in the geometry and attribute map, and the transformer model-based fast method is designed to predict the optimal CU splitting modes for the occupied block of the attribute map. The proposed algorithms are implemented with typical DPC sequences on the Test Model Category 2 (TMC2). The experimental results imply that the average time of the proposed method can significantly reduce 56.39% and 55.10% in the geometry and attribute map, respectively, with negligible Bjontegaard-Delta bitrate (BD-rate) compared with the anchor method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气指甲油完成签到,获得积分10
1秒前
仰望苍穹完成签到,获得积分20
1秒前
鲤鱼一手完成签到,获得积分10
3秒前
yynfyy发布了新的文献求助10
3秒前
王鹏飞完成签到,获得积分10
3秒前
花已烬完成签到,获得积分10
3秒前
细腻烙发布了新的文献求助10
3秒前
小魏完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
领导范儿应助frank采纳,获得10
6秒前
Guochunbao完成签到,获得积分10
7秒前
ding应助科研小白采纳,获得10
8秒前
111完成签到 ,获得积分10
8秒前
光亮梦山完成签到 ,获得积分10
8秒前
CipherSage应助曾曾采纳,获得10
8秒前
9秒前
9秒前
9秒前
CCC完成签到 ,获得积分10
11秒前
11秒前
13秒前
ccc完成签到,获得积分10
13秒前
14秒前
无花果应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
Yyy发布了新的文献求助10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
亮皮鱼老大完成签到,获得积分10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
万能图书馆应助cheveux采纳,获得10
15秒前
yunai应助科研通管家采纳,获得10
15秒前
毛毛球应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286