摘要
Chapter 3 Cycloaddition and Annulation Reactions of Donor–Acceptor Cyclopropanes Roman A. Novikov, Roman A. Novikov N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian FederationSearch for more papers by this authorDenis D. Borisov,, Denis D. Borisov, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian FederationSearch for more papers by this authorYury V. Tomilov, Yury V. Tomilov N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian FederationSearch for more papers by this author Roman A. Novikov, Roman A. Novikov N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian FederationSearch for more papers by this authorDenis D. Borisov,, Denis D. Borisov, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian FederationSearch for more papers by this authorYury V. Tomilov, Yury V. Tomilov N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian FederationSearch for more papers by this author Book Editor(s):Akkattu Biju, Akkattu Biju Indian Institute of Science, Bangalore, 560012 IndiaSearch for more papers by this authorPrabal Banerjee, Prabal Banerjee Indian Institute Technology, Ropar, 140001 IndiaSearch for more papers by this author First published: 16 February 2024 https://doi.org/10.1002/9783527835652.ch3 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Cycloaddition reactions are the most studied reactions of donor–acceptor cyclopropanes in any category. The polarization of the activated carbon-carbon bond of the donor–acceptor cyclopropane (DAC) makes it a perfect synthon for a 1,3-zwitterionic intermediate on activation. So far, the most common activator that has been exploited for the activation of DACs toward formal cycloaddition/annulation reactions is the metal-based Lewis acids. However, a number of methods developed for such cyclization processes also involved metal-free activators. In addition to the 1,3-zwitterionic intermediate, various DACs are also known to serve as precursors for styryl malonates and 1,2-zwitterionic intermediates. Also, there are some examples where DACs act as sources of 1,3- and 1,4-zwitterionic species by using the aryl donor as part of the zwitterionic subunit. Consequently, DACs are known to undergo numerous formal cycloaddition/annulation processes with diverse reacting partners involving C–C and carbon–heteroatom multiple bonds, as well as with many other dipolar species discussed in the domain of this chapter. References Reissig , H.U. and Zimmer , R. ( 2003 ). Chem. Rev. 103 : 1151 – 1196 . 10.1021/cr010016n CASPubMedWeb of Science®Google Scholar Schneider , T.F. , Kaschel , J. , and Werz , D.B. ( 2014 ). Angew. Chem. Int. Ed. 53 : 5504 – 5523 . 10.1002/anie.201309886 CASPubMedWeb of Science®Google Scholar Tomilov , Y.V. , Menchikov , L.G. , Novikov , R.A. et al. ( 2018 ). Russ. Chem. Rev. 87 : 201 – 250 . 10.1070/RCR4787 CASWeb of Science®Google Scholar Pirenne , V. , Muriel , B. , and Waser , J. ( 2021 ). Chem. Rev. 121 : 227 – 263 . 10.1021/acs.chemrev.0c00109 CASPubMedWeb of Science®Google Scholar Augustin , A.U. and Werz , D.B. ( 2021 ). Acc. Chem. Res. 54 : 1528 – 1541 . 10.1021/acs.accounts.1c00023 CASPubMedWeb of Science®Google Scholar O'Connor , N.R. , Wood , J.L. , and Stoltz , B.M. ( 2016 ). Isr. J. Chem. 56 : 431 – 444 . 10.1002/ijch.201500089 CASPubMedWeb of Science®Google Scholar Ivanova , O.A. and Trushkov , I.V. ( 2019 ). Chem. Rec. 19 : 2189 – 2208 . 10.1002/tcr.201800166 CASPubMedWeb of Science®Google Scholar Ghosh , K. and Das , S. ( 2021 ). Org. Biomol. Chem. 19 : 965 – 982 . 10.1039/D0OB02437F CASPubMedWeb of Science®Google Scholar Corey , E.J. and Balanson , R.D. ( 1973 ). Tetrahedron Lett. 14 : 3153 – 3156 . 10.1016/S0040-4039(00)79797-8 CASGoogle Scholar Dolfini , J.E. , Menich , K. , and Corliss , P. ( 1966 ). Tetrahedron Lett. 7 : 4421 – 4426 . 10.1016/S0040-4039(00)70053-0 Google Scholar Berkowitz , W.F. and Grenetz , S.C. ( 1976 ). J. Org. Chem. 41 : 10 – 13 . 10.1021/jo00863a002 CASWeb of Science®Google Scholar Komatsu , M. , Suehiro , I. , Horiguchi , Y. , and Kuwajima , I. ( 1991 ). Synlett 11 : 771 – 773 . 10.1055/s-1991-20868 Google Scholar Saigo , K. , Shimada , S. , Shibasaki , T. , and Hasegawa , M. ( 1990 ). Chem. Lett. 19 : 1093 – 1096 . 10.1246/cl.1990.1093 Google Scholar Marino , J.P. and Laborde , E. ( 1985 ). J. Am. Chem. Soc. 107 : 734 – 735 . 10.1021/ja00289a052 CASWeb of Science®Google Scholar Graziano , M.L. and Chiosi , S. ( 1989 ). J. Chem. Res. (S) 2 : 44 – 45 . Google Scholar Beal , R.B. , Dombroski , M.A. , and Snider , B.B. ( 1986 ). J. Org. Chem. 51 : 4391 – 4399 . 10.1021/jo00373a010 CASWeb of Science®Google Scholar Shimizu , I. , Ohashi , Y. , and Tsuji , J. ( 1985 ). Tetrahedron Lett. 26 : 3825 – 3828 . 10.1016/S0040-4039(00)89261-8 CASWeb of Science®Google Scholar Sugita , Y. , Yamadoi , S. , Hosoya , H. , and Yokoe , I. ( 2001 ). Chem. Pharm. Bull. 49 : 657 – 658 . 10.1248/cpb.49.657 CASPubMedWeb of Science®Google Scholar Liu , L. and Montgomery , J. ( 2006 ). J. Am. Chem. Soc. 128 : 5348 – 5349 . 10.1021/ja0602187 CASPubMedWeb of Science®Google Scholar Takasu , K. , Nagao , S. , and Ihara , M. ( 2006 ). Adv. Synth. Cat. 348 : 2376 – 2380 . 10.1002/adsc.200600308 CASWeb of Science®Google Scholar Fang , J. , Ren , J. , and Wang , Z. ( 2008 ). Tetrahedron Lett. 49 : 6659 – 6662 . 10.1016/j.tetlet.2008.09.028 CASWeb of Science®Google Scholar He , Y. , Zhu , X. , Hu , C. et al. ( 2019 ). ChemistrySelect 4 : 1437 – 1440 . 10.1002/slct.201803945 CASWeb of Science®Google Scholar Trost , B.M. , Morris , P.J. , and Sprague , S.J. ( 2012 ). J. Am. Chem. Soc. 134 : 17823 – 17831 . 10.1021/ja309003x CASPubMedWeb of Science®Google Scholar Xu , H. , Qu , J.-P. , Liao , S. et al. ( 2013 ). Angew. Chem. Int. Ed. 52 : 4004 – 4007 . 10.1002/anie.201300032 CASPubMedWeb of Science®Google Scholar de Nanteuil , F. , Serrano , E. , Perrotta , D. , and Waser , J. ( 2014 ). J. Am. Chem. Soc. 136 : 6239 – 6242 . 10.1021/ja5024578 CASPubMedWeb of Science®Google Scholar Serrano , E. , de Nanteuil , F. , and Waser , J. ( 2014 ). Synlett 25 : 2285 – 2288 . 10.1055/s-0034-1378512 CASWeb of Science®Google Scholar Racine , S. , de Nanteuil , F. , Serrano , E. , and Waser , J. ( 2014 ). Angew. Chem. Int. Ed. 53 : 8484 – 8487 . 10.1002/anie.201404832 CASPubMedWeb of Science®Google Scholar Budynina , E.M. , Ivanova , O.A. , Chagarovskiy , A.O. et al. ( 2015 ). J. Org. Chem. 80 : 12212 – 12223 . 10.1021/acs.joc.5b02146 CASPubMedWeb of Science®Google Scholar Drew , M.A. , Tague , A.J. , Richardson , C. et al. ( 2021 ). Org. Lett. 23 : 4635 – 4639 . 10.1021/acs.orglett.1c01364 CASPubMedWeb of Science®Google Scholar Verma , K. and Banerjee , P. ( 2017 ). Adv. Synth. Catal. 359 : 3848 – 3854 . 10.1002/adsc.201700744 CASWeb of Science®Google Scholar Verma , K. , Taily , I.M. , and Banerjee , P. ( 2019 ). Org. Biomol. Chem. 17 : 8149 – 8152 . 10.1039/C9OB01369E CASPubMedWeb of Science®Google Scholar Verma , K. and Banerjee , P. ( 2016 ). Adv. Synth. Catal. 358 : 2053 – 2058 . 10.1002/adsc.201600221 CASWeb of Science®Google Scholar Cheng , Q.-Q. , Qian , Y. , Zavalij , P.Y. , and Doyle , M.P. ( 2015 ). Org. Lett. 17 : 3568 – 3571 . 10.1021/acs.orglett.5b01674 CASPubMedWeb of Science®Google Scholar Dey , R. and Banerjee , P. ( 2017 ). Org. Lett. 19 : 304 – 307 . 10.1021/acs.orglett.6b03276 CASPubMedWeb of Science®Google Scholar Kaga , A. , Gandamana , D.A. , Tamura , S. et al. ( 2017 ). Synlett 28 : 1091 – 1095 . 10.1055/s-0036-1588703 CASWeb of Science®Google Scholar Sasaki , M. , Kondo , Y. , Nishio , T. , and Takeda , K. ( 2016 ). Org. Lett. 18 : 3858 – 3861 . 10.1021/acs.orglett.6b01865 CASPubMedWeb of Science®Google Scholar Blom , J. , Vidal-Albalat , A. , Jorgensen , J. et al. ( 2017 ). Angew. Chem. Int. Ed. 56 : 11831 – 11835 . 10.1002/anie.201706150 CASPubMedWeb of Science®Google Scholar Dai , C. , Li , M. , Chen , M. et al. ( 2019 ). J. Chem. Res. 43 : 43 – 49 . 10.1177/1747519819831883 CASWeb of Science®Google Scholar Lu , Z. , Shen , M. , and Yoon , T.P. ( 2011 ). J. Am. Chem. Soc. 133 : 1162 – 1164 . 10.1021/ja107849y CASPubMedWeb of Science®Google Scholar Wang , C. , Ren , X. , Xie , H. , and Lu , Z. ( 2015 ). Chem. – Eur. J. 21 : 9676 – 9680 . 10.1002/chem.201500873 CASPubMedWeb of Science®Google Scholar Zhang , J. , Jiang , H. , and Zhu , S. ( 2017 ). Adv. Synth. Catal. 359 : 2924 – 2930 . 10.1002/adsc.201700345 CASWeb of Science®Google Scholar Nguyen , H.M. , Chand , H.R. , Golantsov , N.E. et al. ( 2020 ). Synlett 31 : 295 – 299 . 10.1055/s-0039-1690775 CASWeb of Science®Google Scholar Suleymanov , A.A. , Le Du , E. , Dong , Z. et al. ( 2020 ). Org. Lett. 22 : 4517 – 4522 . 10.1021/acs.orglett.0c01527 CASPubMedWeb of Science®Google Scholar Ahlburg , N.L. , Jones , P.G. , and Werz , D.B. ( 2020 ). Org. Lett. 22 : 6404 – 6408 . 10.1021/acs.orglett.0c02210 CASPubMedWeb of Science®Google Scholar Luecht , A. , Kreft , A. , Jones , P.G. , and Werz , D.B. ( 2020 ). Eur. J. Org. Chem. 17 : 2560 – 2564 . 10.1002/ejoc.202000233 Google Scholar Xu , C. , Wei , N. , Zhu , D. , and Wang , M. ( 2020 ). ChemistrySelect 5 : 11399 – 11402 . 10.1002/slct.202002967 CASWeb of Science®Google Scholar Zhu , X. , Pan , D. , Mou , C. et al. ( 2020 ). Front. Chem. 8 : 542 . 10.3389/fchem.2020.00542 CASPubMedGoogle Scholar Xiao , J.A. , Li , J.L. , Cheng , X.L. et al. ( 2021 ). Chem. Comm. 57 : 4456 – 4459 . 10.1039/D0CC07957J CASPubMedWeb of Science®Google Scholar Singh , K. , Pramanik , S. , Hamlin , T.A. et al. ( 2019 ). Chem. Commun. 55 : 7069 – 7072 . 10.1039/C9CC03393A CASPubMedWeb of Science®Google Scholar Graziano , M.L. , Iesce , M.R. , Cermola , F. , and Cimminiello , G. ( 1992 ). J. Chem. Res. (S) 1 : 4 – 5 . Google Scholar Yadav , V.K. and Sriramurthy , V. ( 2004 ). Angew. Chem. Int. Ed. 43 : 2669 – 2671 . 10.1002/anie.200453823 CASPubMedWeb of Science®Google Scholar Tamaki , T. , Ohashi , M. , and Ogoshi , S. ( 2011 ). Angew. Chem. Int. Ed. 50 : 12067 – 12070 . 10.1002/anie.201106174 CASPubMedWeb of Science®Google Scholar Qi , X. and Ready , J.M. ( 2008 ). Angew. Chem. Int. Ed. 47 : 7068 – 7070 . 10.1002/anie.200801957 CASPubMedWeb of Science®Google Scholar Mackay , W.D. , Fistikci , M. , Carris , R.M. , and Johnson , J.S. ( 2014 ). Org. Lett. 16 : 1626 – 1629 . 10.1021/ol500256n CASPubMedWeb of Science®Google Scholar Racine , S. , Hegedues , B. , Scopelliti , R. , and Waser , J. ( 2016 ). Chem. – Eur. J. 22 : 11997 – 12001 . 10.1002/chem.201602755 CASPubMedWeb of Science®Google Scholar Xia , X.-F. , Song , X.-R. , Liu , X.-Y. , and Liang , Y.-M. ( 2012 ). Chem. Asian J. 7 : 1538 – 1541 . 10.1002/asia.201200104 CASPubMedWeb of Science®Google Scholar Luo , Z. , Zhou , B. , and Li , Y. ( 2012 ). Org. Lett. 14 : 2540 – 2543 . 10.1021/ol3008414 CASPubMedWeb of Science®Google Scholar Harrington , P. and Kerr , M.A. ( 1997 ). Tetrahedron Lett. 38 : 5949 – 5952 . 10.1016/S0040-4039(97)01351-8 CASWeb of Science®Google Scholar Kerr , M.A. and Keddy , R.G. ( 1999 ). Tetrahedron Lett. 40 : 5671 – 5675 . 10.1016/S0040-4039(99)01107-7 CASWeb of Science®Google Scholar England , D.B. , Kuss , T.D.O. , Keddy , R.G. , and Kerr , M.A. ( 2001 ). J. Org. Chem. 66 : 4704 – 4709 . 10.1021/jo015643r CASPubMedWeb of Science®Google Scholar Venkatesh , C. , Singh , P.P. , Ila , H. , and Junjappa , H. ( 2006 ). Eur. J. Org. Chem. 23 : 5378 – 5386 .