Interpretable Cognitive Ability Prediction: A Comprehensive Gated Graph Transformer Framework for Analyzing Functional Brain Networks

可解释性 计算机科学 人工智能 连接体 认知 机器学习 图形 人类连接体项目 功能磁共振成像 神经科学 功能连接 理论计算机科学 心理学
作者
Gang Qu,Anton Orlichenko,Junqi Wang,Gemeng Zhang,Li Xiao,Kun Zhang,Tony W. Wilson,Julia M. Stephen,Vince D. Calhoun,Yu‐Ping Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1568-1578 被引量:3
标识
DOI:10.1109/tmi.2023.3343365
摘要

Graph convolutional deep learning has emerged as a promising method to explore the functional organization of the human brain in neuroscience research. This paper presents a novel framework that utilizes the gated graph transformer (GGT) model to predict individuals' cognitive ability based on functional connectivity (FC) derived from fMRI. Our framework incorporates prior spatial knowledge and uses a random-walk diffusion strategy that captures the intricate structural and functional relationships between different brain regions. Specifically, our approach employs learnable structural and positional encodings (LSPE) in conjunction with a gating mechanism to efficiently disentangle the learning of positional encoding (PE) and graph embeddings. Additionally, we utilize the attention mechanism to derive multi-view node feature embeddings and dynamically distribute propagation weights between each node and its neighbors, which facilitates the identification of significant biomarkers from functional brain networks and thus enhances the interpretability of the findings. To evaluate our proposed model in cognitive ability prediction, we conduct experiments on two large-scale brain imaging datasets: the Philadelphia Neurodevelopmental Cohort (PNC) and the Human Connectome Project (HCP). The results show that our approach not only outperforms existing methods in prediction accuracy but also provides superior explainability, which can be used to identify important FCs underlying cognitive behaviors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助chonol采纳,获得10
1秒前
X_完成签到,获得积分20
1秒前
1秒前
花痴的咖啡豆完成签到,获得积分10
1秒前
鸡腿子完成签到,获得积分10
1秒前
2秒前
Song完成签到,获得积分10
2秒前
LONG发布了新的文献求助10
2秒前
panghu完成签到,获得积分10
2秒前
wwwwww发布了新的文献求助10
3秒前
3秒前
zuigu发布了新的文献求助10
3秒前
xdy1990完成签到,获得积分10
3秒前
IceWater完成签到,获得积分10
4秒前
4秒前
ma发布了新的文献求助10
5秒前
橘子发布了新的文献求助10
5秒前
saul发布了新的文献求助10
6秒前
6秒前
6秒前
王雷发布了新的文献求助10
7秒前
HeyHsc完成签到,获得积分10
7秒前
Zx_1993应助长情母鸡采纳,获得20
7秒前
8秒前
8秒前
One应助浪迹天涯采纳,获得10
8秒前
8秒前
8秒前
mty完成签到,获得积分10
8秒前
芋圆发布了新的文献求助10
9秒前
清爽玫瑰完成签到,获得积分20
9秒前
comma完成签到,获得积分10
9秒前
9秒前
学海无涯完成签到,获得积分10
10秒前
zhouxun完成签到,获得积分20
11秒前
李健的小迷弟应助七七采纳,获得10
11秒前
11秒前
研友_LNVX1L完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744