亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MAGCDA: A Multi-Hop Attention Graph Neural Networks Method for CircRNA-Disease Association Prediction

计算机科学 机器学习 图形 随机森林 人工智能 疾病 人工神经网络 数据挖掘 理论计算机科学 医学 病理
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,De-Shuang Huang,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1752-1761 被引量:3
标识
DOI:10.1109/jbhi.2023.3346821
摘要

With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nihao完成签到 ,获得积分10
1秒前
Augustines发布了新的文献求助10
25秒前
26秒前
liu发布了新的文献求助10
30秒前
万能图书馆应助liu采纳,获得10
38秒前
落山姬完成签到,获得积分10
54秒前
pokikiii完成签到 ,获得积分10
56秒前
爱科研的小凡完成签到,获得积分10
1分钟前
kira完成签到 ,获得积分10
1分钟前
bkagyin应助白华苍松采纳,获得10
1分钟前
1分钟前
1分钟前
康康康发布了新的文献求助10
1分钟前
所所应助ceeray23采纳,获得20
1分钟前
康康康完成签到,获得积分20
1分钟前
小蘑菇应助ceeray23采纳,获得20
1分钟前
喜悦的小土豆完成签到 ,获得积分10
1分钟前
2分钟前
Zzzhu完成签到,获得积分10
2分钟前
桐桐应助liu采纳,获得10
2分钟前
2分钟前
2分钟前
Zzzhu发布了新的文献求助20
2分钟前
Slhy发布了新的文献求助10
2分钟前
哇啦哇啦发布了新的文献求助20
2分钟前
2分钟前
liu发布了新的文献求助10
2分钟前
领导范儿应助leo采纳,获得10
2分钟前
哇啦哇啦完成签到,获得积分10
3分钟前
3分钟前
Becky完成签到 ,获得积分10
3分钟前
liu发布了新的文献求助10
3分钟前
共享精神应助白华苍松采纳,获得10
3分钟前
星辰大海应助liu采纳,获得30
3分钟前
善学以致用应助达不溜搽采纳,获得10
3分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564927
求助须知:如何正确求助?哪些是违规求助? 4649642
关于积分的说明 14689226
捐赠科研通 4591587
什么是DOI,文献DOI怎么找? 2519284
邀请新用户注册赠送积分活动 1491893
关于科研通互助平台的介绍 1462928