清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MAGCDA: A Multi-Hop Attention Graph Neural Networks Method for CircRNA-Disease Association Prediction

计算机科学 机器学习 图形 随机森林 人工智能 疾病 人工神经网络 数据挖掘 理论计算机科学 医学 病理
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,De-Shuang Huang,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1752-1761 被引量:3
标识
DOI:10.1109/jbhi.2023.3346821
摘要

With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thi发布了新的文献求助10
刚刚
qiqiqiqiqi完成签到 ,获得积分10
7秒前
llll完成签到 ,获得积分0
7秒前
三杯吐然诺完成签到 ,获得积分10
9秒前
科研通AI2S应助小鱼女侠采纳,获得10
10秒前
我独舞完成签到 ,获得积分10
19秒前
20秒前
22秒前
可耐的万言完成签到 ,获得积分10
22秒前
sidashu发布了新的文献求助10
25秒前
小鱼女侠发布了新的文献求助10
26秒前
善学以致用应助摆渡人采纳,获得10
26秒前
Edward发布了新的文献求助10
27秒前
Hello应助胡泳旭采纳,获得10
28秒前
妮妮完成签到 ,获得积分10
30秒前
fuws完成签到 ,获得积分10
31秒前
研友_LmVygn完成签到 ,获得积分10
35秒前
36秒前
Aiden完成签到 ,获得积分10
38秒前
安静的ky完成签到,获得积分10
39秒前
无花果应助sidashu采纳,获得10
47秒前
结实凌瑶完成签到 ,获得积分10
55秒前
1分钟前
gujianhua发布了新的文献求助10
1分钟前
摆渡人发布了新的文献求助10
1分钟前
沐浠完成签到 ,获得积分10
1分钟前
zm完成签到 ,获得积分10
1分钟前
andre20完成签到 ,获得积分10
1分钟前
宇文鹏煊完成签到 ,获得积分10
1分钟前
1分钟前
gujianhua完成签到,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
科研通AI6应助老10采纳,获得10
1分钟前
shadow完成签到,获得积分10
1分钟前
芬芬完成签到 ,获得积分10
1分钟前
自由盼夏完成签到 ,获得积分10
1分钟前
你好你好完成签到 ,获得积分10
1分钟前
Alex-Song完成签到 ,获得积分0
1分钟前
哥哥发布了新的文献求助10
1分钟前
sadh2完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771608
捐赠科研通 4615167
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467551