MAGCDA: A Multi-Hop Attention Graph Neural Networks Method for CircRNA-Disease Association Prediction

计算机科学 机器学习 图形 随机森林 人工智能 疾病 人工神经网络 数据挖掘 理论计算机科学 医学 病理
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,De-Shuang Huang,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1752-1761 被引量:3
标识
DOI:10.1109/jbhi.2023.3346821
摘要

With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
山有扶苏完成签到,获得积分10
2秒前
冀新海发布了新的文献求助10
2秒前
牛姐完成签到,获得积分10
2秒前
科研通AI5应助j222采纳,获得10
3秒前
爰采唐矣完成签到,获得积分10
3秒前
4秒前
怪盗基德发布了新的文献求助10
4秒前
Lonnie发布了新的文献求助20
4秒前
Koala完成签到,获得积分10
4秒前
CipherSage应助好运6连采纳,获得10
5秒前
豆包_P12345完成签到 ,获得积分10
5秒前
古果发布了新的文献求助100
6秒前
D调的华丽发布了新的文献求助10
6秒前
猕猴桃完成签到 ,获得积分10
6秒前
小荷完成签到,获得积分10
6秒前
高CA完成签到,获得积分10
6秒前
liuhll完成签到,获得积分10
6秒前
小蘑材完成签到,获得积分10
6秒前
blueming完成签到,获得积分10
8秒前
Hidden完成签到,获得积分10
8秒前
zhaoli发布了新的文献求助10
8秒前
adou完成签到,获得积分10
9秒前
隐形的代梅完成签到,获得积分10
9秒前
多多完成签到,获得积分10
9秒前
可爱的函函应助小李采纳,获得10
9秒前
ll完成签到,获得积分10
9秒前
李健应助SASI采纳,获得10
9秒前
文静的从菡完成签到,获得积分10
10秒前
vivy完成签到 ,获得积分10
10秒前
Srishti完成签到,获得积分10
11秒前
huahua发布了新的文献求助10
11秒前
11秒前
夏之茗完成签到,获得积分10
11秒前
Carlo完成签到,获得积分10
11秒前
11秒前
万能的翔王完成签到,获得积分10
11秒前
领导范儿应助lxy采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4902316
求助须知:如何正确求助?哪些是违规求助? 4181329
关于积分的说明 12980881
捐赠科研通 3946631
什么是DOI,文献DOI怎么找? 2164732
邀请新用户注册赠送积分活动 1182940
关于科研通互助平台的介绍 1089408