计算机科学
机器学习
图形
随机森林
人工智能
疾病
人工神经网络
数据挖掘
理论计算机科学
医学
病理
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,De-Shuang Huang,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2023-12-25
卷期号:28 (3): 1752-1761
被引量:2
标识
DOI:10.1109/jbhi.2023.3346821
摘要
With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI