亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MAGCDA: A Multi-Hop Attention Graph Neural Networks Method for CircRNA-Disease Association Prediction

计算机科学 机器学习 图形 随机森林 人工智能 疾病 人工神经网络 数据挖掘 理论计算机科学 医学 病理
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,De-Shuang Huang,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1752-1761 被引量:3
标识
DOI:10.1109/jbhi.2023.3346821
摘要

With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Li采纳,获得10
4秒前
慕青应助研友_89eKw8采纳,获得10
6秒前
19秒前
kale123关注了科研通微信公众号
22秒前
32秒前
烟花应助kale123采纳,获得10
41秒前
Li发布了新的文献求助10
1分钟前
1分钟前
1分钟前
kale123发布了新的文献求助10
1分钟前
研友_89eKw8发布了新的文献求助10
1分钟前
1分钟前
蚌医闫志发布了新的文献求助10
1分钟前
蓝华完成签到 ,获得积分10
1分钟前
1分钟前
蚌医闫志完成签到,获得积分10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
1分钟前
linlinliu发布了新的文献求助30
1分钟前
2分钟前
kale123完成签到,获得积分20
2分钟前
gexzygg应助Li采纳,获得10
3分钟前
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
jasonwee发布了新的文献求助10
4分钟前
4分钟前
4分钟前
Jasper应助单薄水星采纳,获得10
4分钟前
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549249
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634876
捐赠科研通 4576049
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456512