MAGCDA: A Multi-Hop Attention Graph Neural Networks Method for CircRNA-Disease Association Prediction

计算机科学 机器学习 图形 随机森林 人工智能 疾病 人工神经网络 数据挖掘 理论计算机科学 医学 病理
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,De-Shuang Huang,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1752-1761 被引量:3
标识
DOI:10.1109/jbhi.2023.3346821
摘要

With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
opticalff完成签到,获得积分10
1秒前
1秒前
曲雪一发布了新的文献求助10
1秒前
猫和老鼠完成签到,获得积分10
1秒前
lla完成签到,获得积分10
1秒前
zj完成签到,获得积分10
2秒前
2秒前
今后应助ST采纳,获得10
2秒前
九九发布了新的文献求助10
2秒前
3秒前
Lucas应助木木采纳,获得10
3秒前
HongMou完成签到,获得积分10
3秒前
3秒前
4秒前
风中雨筠发布了新的文献求助10
4秒前
liushuang发布了新的文献求助10
4秒前
5秒前
时暮辰发布了新的文献求助10
5秒前
Ray完成签到,获得积分10
5秒前
Agnes发布了新的文献求助10
6秒前
科研民工发布了新的文献求助10
6秒前
kb完成签到,获得积分10
6秒前
北冥有鱼发布了新的文献求助10
6秒前
英俊的铭应助crabbbb68采纳,获得10
6秒前
慕青应助徐露珠采纳,获得10
7秒前
IIIris完成签到,获得积分10
7秒前
opticalff发布了新的文献求助10
7秒前
Stella应助好久不见采纳,获得10
7秒前
Owen应助好久不见采纳,获得10
7秒前
科研通AI6应助好久不见采纳,获得10
7秒前
科研通AI6应助好久不见采纳,获得10
7秒前
田様应助好久不见采纳,获得10
7秒前
科研通AI6应助好久不见采纳,获得30
7秒前
脑洞疼应助好久不见采纳,获得10
7秒前
LIU完成签到,获得积分10
7秒前
bkagyin应助好久不见采纳,获得10
7秒前
Hello应助好久不见采纳,获得10
7秒前
科研通AI6应助好久不见采纳,获得10
7秒前
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588071
求助须知:如何正确求助?哪些是违规求助? 4671128
关于积分的说明 14785936
捐赠科研通 4624341
什么是DOI,文献DOI怎么找? 2531566
邀请新用户注册赠送积分活动 1500214
关于科研通互助平台的介绍 1468207