MAGCDA: A Multi-Hop Attention Graph Neural Networks Method for CircRNA-Disease Association Prediction

计算机科学 机器学习 图形 随机森林 人工智能 疾病 人工神经网络 数据挖掘 理论计算机科学 医学 病理
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,De-Shuang Huang,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1752-1761 被引量:3
标识
DOI:10.1109/jbhi.2023.3346821
摘要

With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aourp应助搞怪的之云采纳,获得10
刚刚
刚刚
852应助幽默千柔采纳,获得10
2秒前
体贴雨真发布了新的文献求助30
4秒前
lyn完成签到,获得积分10
6秒前
zyq111111发布了新的文献求助10
6秒前
传奇3应助QJYKKK采纳,获得10
7秒前
8秒前
8秒前
9秒前
止咳宝完成签到,获得积分10
9秒前
xinlixi完成签到,获得积分0
9秒前
hahahaweiwei完成签到,获得积分10
10秒前
雪生在无人荒野完成签到,获得积分10
11秒前
12秒前
安渝发布了新的文献求助10
13秒前
zyq111111完成签到,获得积分10
14秒前
嘻哈师徒发布了新的文献求助10
15秒前
浮游应助果子荆采纳,获得10
22秒前
李杰发布了新的文献求助10
23秒前
李健应助火星上安筠采纳,获得10
24秒前
科研通AI2S应助hyw010724采纳,获得10
24秒前
风中的老黑完成签到,获得积分10
25秒前
25秒前
27秒前
万能图书馆应助小刘采纳,获得10
27秒前
和谐煜祺完成签到,获得积分10
27秒前
吴雨涛完成签到,获得积分10
28秒前
聪明日记本完成签到,获得积分10
29秒前
852应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
29秒前
dreamlightzy应助科研通管家采纳,获得10
29秒前
科目三应助科研通管家采纳,获得10
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
Hello应助科研通管家采纳,获得10
30秒前
核桃应助科研通管家采纳,获得20
30秒前
杨光完成签到,获得积分10
30秒前
zzz完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309724
求助须知:如何正确求助?哪些是违规求助? 4454247
关于积分的说明 13859535
捐赠科研通 4342205
什么是DOI,文献DOI怎么找? 2384385
邀请新用户注册赠送积分活动 1378844
关于科研通互助平台的介绍 1347021