MAGCDA: A Multi-Hop Attention Graph Neural Networks Method for CircRNA-Disease Association Prediction

计算机科学 机器学习 图形 随机森林 人工智能 疾病 人工神经网络 数据挖掘 理论计算机科学 医学 病理
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,De-Shuang Huang,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1752-1761 被引量:3
标识
DOI:10.1109/jbhi.2023.3346821
摘要

With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PeterLin发布了新的文献求助10
刚刚
JialeMa发布了新的文献求助10
刚刚
周七七发布了新的文献求助10
1秒前
1秒前
蚂蚁Y嘿发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
党柯完成签到,获得积分10
3秒前
刘思忆发布了新的文献求助10
3秒前
青石发布了新的文献求助10
4秒前
踏实的兔子完成签到 ,获得积分10
4秒前
wy发布了新的文献求助10
5秒前
顺心的羊完成签到,获得积分10
5秒前
明空完成签到,获得积分10
6秒前
wjwqz发布了新的文献求助10
6秒前
6秒前
6秒前
西凉河葛三叔完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
Viva发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
Abdurrahman完成签到,获得积分10
8秒前
Lido完成签到,获得积分10
8秒前
小马甲应助nuth采纳,获得10
8秒前
9秒前
李健的小迷弟应助青石采纳,获得10
9秒前
拉拉发布了新的文献求助10
9秒前
Alger完成签到,获得积分10
10秒前
阿宁爱学习完成签到,获得积分10
10秒前
dai完成签到,获得积分10
11秒前
李萌发布了新的文献求助10
11秒前
铌123发布了新的文献求助10
11秒前
羡鱼发布了新的文献求助10
11秒前
闪闪跳跳糖完成签到,获得积分10
11秒前
11秒前
XL完成签到,获得积分10
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442393
求助须知:如何正确求助?哪些是违规求助? 4552598
关于积分的说明 14237646
捐赠科研通 4473916
什么是DOI,文献DOI怎么找? 2451715
邀请新用户注册赠送积分活动 1442571
关于科研通互助平台的介绍 1418541