纳米流体学
纳米技术
离子运输机
材料科学
离子
生物物理学
化学
生物
有机化学
作者
Qun Ma,Wenjing Chu,Xianliang Nong,Jing Zhao,Hong Liu,Qiujiao Du,Jielin Sun,Jianlei Shen,Si‐Min Lu,Meihua Lin,Yu Huang,Fan Xia
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-02-13
卷期号:18 (8): 6570-6578
被引量:2
标识
DOI:10.1021/acsnano.3c12547
摘要
Nanofluidic biosensors have been widely used for detection of analytes based on the change of system resistance before and after target–probe interactions. However, their sensitivity is limited when system resistance barely changes toward low-concentration targets. Here, we proposed a strategy to address this issue by means of target-induced change of local membrane potential under relatively unchanged system resistance. The local membrane potential originated from the directional diffusion of photogenerated carriers across nanofluidic biosensors and gated photoinduced ionic current signal before and after target–probe interactions. The sensitivity of such biosensors for the detection of biomolecules such as circulating tumor DNA (ctDNA) and lysozyme exceeds that of applying a traditional strategy by more than 3 orders of magnitude under unchanged system resistance. Such biosensors can specifically detect the small molecule biomarker in the blood sample between prostate cancer patients and healthy humans. The key advantages of such nanofluidic biosensors are therefore complementary to traditional nanofluidic biosensors, with potential applications in a point-of-care analytical tool.
科研通智能强力驱动
Strongly Powered by AbleSci AI