A full‐probabilistic cloud analysis for structural seismic fragility via decoupled M‐PDEM

脆弱性 概率密度函数 结构工程 增量动力分析 概率逻辑 响应分析 蒙特卡罗方法 非线性系统 随机变量 算法的概率分析 结构体系 应用数学 工程类 计算机科学 数学 地震分析 物理 统计 量子力学 热力学
作者
Meng‐Ze Lyu,De‐Cheng Feng,Xu‐Yang Cao,Michael Beer
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (5): 1863-1881 被引量:11
标识
DOI:10.1002/eqe.4093
摘要

Abstract Performance‐based earthquake engineering (PBEE) is essential for ensuring engineering safety. Conducting seismic fragility analysis within this framework is imperative. Existing methods for seismic fragility analysis often rely heavily on double loop reanalysis and empirical data fitting, leading to challenges in obtaining high‐precision results with a limited number of representative structural analysis instances. In this context, a new methodology for seismic fragility based on a full‐probabilistic cloud analysis is proposed via the decoupled multi‐probability density evolution method (M‐PDEM). In the proposed method, the assumption of a log‐normal distribution is not required. According to the random event description of the principle of preservation of probability, the transient probability density functions (PDFs) of intensity measure (IM) and engineering demand parameter (EDP), as key response quantities of the seismic‐structural system, are governed by one‐dimensional Li‐Chen equations, where the physics‐driven forces are determined by representative analysis data of the stochastic dynamic system. By generating ground motions based on representative points of basic random variables and performing structural dynamic analysis, the decoupled M‐PDEM is employed to solve the one‐dimensional Li‐Chen equations. This yields the joint PDF of IM and EDP, as well as the conditional PDF of EDP given IM, resulting in seismic fragility analysis outcomes. The numerical implementation procedure is elaborated in detail, and validation is performed using a six‐story nonlinear reinforced concrete (RC) frame subjected to non‐stationary stochastic ground motions. Comparative analysis against Monte Carlo simulation (MCS) and traditional cloud analysis based on least squares regression (LSR) reveals that the proposed method achieves higher computational precision at comparable structural analysis costs. By directly solving the physics‐driven Li‐Chen equations, the method provides the full‐probabilistic joint information of IM and EDP required for cloud analysis, surpassing the accuracy achieved by traditional methods based on statistical moment fitting and empirical distribution assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遥远的救世主完成签到,获得积分10
1秒前
瘦瘦完成签到,获得积分10
3秒前
清爽乐菱应助1717采纳,获得30
3秒前
3秒前
lulu发布了新的文献求助10
5秒前
孝顺的觅风完成签到 ,获得积分10
5秒前
Jasper应助科研通管家采纳,获得10
6秒前
小马过河应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
CipherSage应助小王采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
花花应助科研通管家采纳,获得10
7秒前
小二郎应助西子阳采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
yar应助科研通管家采纳,获得10
7秒前
7秒前
小马过河应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
ding应助科研通管家采纳,获得10
8秒前
咖褐完成签到,获得积分10
9秒前
淡然依凝完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
fei8047发布了新的文献求助10
12秒前
15秒前
16秒前
16秒前
天天快乐应助zrc采纳,获得30
17秒前
小巧的烤鸡应助河鲸采纳,获得50
18秒前
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061