A full‐probabilistic cloud analysis for structural seismic fragility via decoupled M‐PDEM

脆弱性 概率密度函数 结构工程 增量动力分析 概率逻辑 响应分析 蒙特卡罗方法 非线性系统 随机变量 算法的概率分析 结构体系 应用数学 工程类 计算机科学 数学 地震分析 物理 统计 量子力学 热力学
作者
Meng‐Ze Lyu,De‐Cheng Feng,Xu‐Yang Cao,Michael Beer
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (5): 1863-1881 被引量:11
标识
DOI:10.1002/eqe.4093
摘要

Abstract Performance‐based earthquake engineering (PBEE) is essential for ensuring engineering safety. Conducting seismic fragility analysis within this framework is imperative. Existing methods for seismic fragility analysis often rely heavily on double loop reanalysis and empirical data fitting, leading to challenges in obtaining high‐precision results with a limited number of representative structural analysis instances. In this context, a new methodology for seismic fragility based on a full‐probabilistic cloud analysis is proposed via the decoupled multi‐probability density evolution method (M‐PDEM). In the proposed method, the assumption of a log‐normal distribution is not required. According to the random event description of the principle of preservation of probability, the transient probability density functions (PDFs) of intensity measure (IM) and engineering demand parameter (EDP), as key response quantities of the seismic‐structural system, are governed by one‐dimensional Li‐Chen equations, where the physics‐driven forces are determined by representative analysis data of the stochastic dynamic system. By generating ground motions based on representative points of basic random variables and performing structural dynamic analysis, the decoupled M‐PDEM is employed to solve the one‐dimensional Li‐Chen equations. This yields the joint PDF of IM and EDP, as well as the conditional PDF of EDP given IM, resulting in seismic fragility analysis outcomes. The numerical implementation procedure is elaborated in detail, and validation is performed using a six‐story nonlinear reinforced concrete (RC) frame subjected to non‐stationary stochastic ground motions. Comparative analysis against Monte Carlo simulation (MCS) and traditional cloud analysis based on least squares regression (LSR) reveals that the proposed method achieves higher computational precision at comparable structural analysis costs. By directly solving the physics‐driven Li‐Chen equations, the method provides the full‐probabilistic joint information of IM and EDP required for cloud analysis, surpassing the accuracy achieved by traditional methods based on statistical moment fitting and empirical distribution assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
居星辰完成签到 ,获得积分10
1秒前
搜集达人应助Parker采纳,获得30
2秒前
2秒前
style完成签到 ,获得积分20
2秒前
远离颠公完成签到,获得积分10
2秒前
11完成签到,获得积分10
3秒前
3秒前
SciGPT应助mimimi采纳,获得10
3秒前
3秒前
4秒前
思源应助nnnn采纳,获得10
5秒前
huang发布了新的文献求助10
5秒前
5秒前
科研小白菜发布了新的文献求助200
6秒前
鸭梨关注了科研通微信公众号
6秒前
大庆第一完成签到,获得积分20
6秒前
6秒前
JamesPei应助dinaa采纳,获得10
6秒前
英俊书雪完成签到,获得积分10
7秒前
7秒前
7秒前
纯真以晴完成签到,获得积分10
7秒前
夹心发布了新的文献求助10
7秒前
达da给达da的求助进行了留言
8秒前
splaker7发布了新的文献求助10
8秒前
8秒前
8秒前
Lucas应助阿瑶采纳,获得10
9秒前
tzzzz发布了新的文献求助10
9秒前
9秒前
bwbpuh3完成签到,获得积分10
9秒前
张可欣完成签到,获得积分10
10秒前
藜藜藜在乎你完成签到 ,获得积分10
10秒前
splaker7发布了新的文献求助10
10秒前
龙飞凤舞完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
12秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228623
求助须知:如何正确求助?哪些是违规求助? 2876441
关于积分的说明 8194980
捐赠科研通 2543571
什么是DOI,文献DOI怎么找? 1373838
科研通“疑难数据库(出版商)”最低求助积分说明 646860
邀请新用户注册赠送积分活动 621453