可穿戴计算机
康复
膝关节置换术
可穿戴技术
计算机科学
工程类
物理医学与康复
嵌入式系统
医学
关节置换术
物理疗法
外科
作者
Julien Lebleu,Kim Daniels,Andries Pauwels,Lucie Dekimpe,Jean Mapinduzi,Hervé Poilvache,Bruno Bonnechère
出处
期刊:Sensors
[MDPI AG]
日期:2024-02-10
卷期号:24 (4): 1163-1163
摘要
Osteoarthritis (OA) poses a growing challenge for the aging population, especially in the hip and knee joints, contributing significantly to disability and societal costs. Exploring the integration of wearable technology, this study addresses the limitations of traditional rehabilitation assessments in capturing real-world experiences and dynamic variations. Specifically, it focuses on continuously monitoring physical activity in hip and knee OA patients using automated unsupervised evaluations within the rehabilitation process. We analyzed data from 1144 patients who used a mobile health application after surgery; the activity data were collected using the Garmin Vivofit 4. Several parameters, such as the total number of steps per day, the peak 6-minute consecutive cadence (P6MC) and peak 1-minute cadence (P1M), were computed and analyzed on a daily basis. The results indicated that cadence-based measurements can effectively, and earlier, differ among patients with hip and knee conditions, as well as in the recovery process. Comparisons based on recovery status and type of surgery reveal distinctive trajectories, emphasizing the effectiveness of P6MC and P1M in detecting variations earlier than total steps per day. Furthermore, cadence-based measurements showed a lower inter-day variability (40%) compared to the total number of steps per day (80%). Automated assessments, including P1M and P6MC, offer nuanced insights into the patients’ dynamic activity profiles.
科研通智能强力驱动
Strongly Powered by AbleSci AI