Predicting cognitive scores from wearable-based digital physiological features using machine learning: data from a clinical trial in mild cognitive impairment

医学 认知 可穿戴计算机 物理医学与康复 神经心理学 认知测验 临床试验 神经心理学测验 机器学习 人工智能 物理疗法 计算机科学 精神科 内科学 嵌入式系统
作者
Yuri Germanovich Rykov,Michael D. Patterson,Bikram A. Gangwar,Syaheed B. Jabar,Jacklyn Leonardo,Kok Pin Ng,Nagaendran Kandiah
出处
期刊:BMC Medicine [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12916-024-03252-y
摘要

Continuous assessment and remote monitoring of cognitive function in individuals with mild cognitive impairment (MCI) enables tracking therapeutic effects and modifying treatment to achieve better clinical outcomes. While standardized neuropsychological tests are inconvenient for this purpose, wearable sensor technology collecting physiological and behavioral data looks promising to provide proxy measures of cognitive function. The objective of this study was to evaluate the predictive ability of digital physiological features, based on sensor data from wrist-worn wearables, in determining neuropsychological test scores in individuals with MCI.We used the dataset collected from a 10-week single-arm clinical trial in older adults (50-70 years old) diagnosed with amnestic MCI (N = 30) who received a digitally delivered multidomain therapeutic intervention. Cognitive performance was assessed before and after the intervention using the Neuropsychological Test Battery (NTB) from which composite scores were calculated (executive function, processing speed, immediate memory, delayed memory and global cognition). The Empatica E4, a wrist-wearable medical-grade device, was used to collect physiological data including blood volume pulse, electrodermal activity, and skin temperature. We processed sensors' data and extracted a range of physiological features. We used interpolated NTB scores for 10-day intervals to test predictability of scores over short periods and to leverage the maximum of wearable data available. In addition, we used individually centered data which represents deviations from personal baselines. Supervised machine learning was used to train models predicting NTB scores from digital physiological features and demographics. Performance was evaluated using "leave-one-subject-out" and "leave-one-interval-out" cross-validation.The final sample included 96 aggregated data intervals from 17 individuals. In total, 106 digital physiological features were extracted. We found that physiological features, especially measures of heart rate variability, correlated most strongly to the executive function compared to other cognitive composites. The model predicted the actual executive function scores with correlation r = 0.69 and intra-individual changes in executive function scores with r = 0.61.Our findings demonstrated that wearable-based physiological measures, primarily HRV, have potential to be used for the continuous assessments of cognitive function in individuals with MCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分10
刚刚
chenyan完成签到,获得积分10
1秒前
cc发布了新的文献求助10
1秒前
美满的机器猫完成签到,获得积分10
1秒前
xfcy完成签到,获得积分10
3秒前
4秒前
奋斗若风完成签到,获得积分10
4秒前
hhm完成签到,获得积分10
5秒前
闫栋完成签到 ,获得积分10
7秒前
ccyy完成签到 ,获得积分10
7秒前
火星上访旋完成签到,获得积分10
8秒前
9秒前
黄毅完成签到,获得积分10
9秒前
Night发布了新的文献求助10
9秒前
翻斗花园爆破手牛爷爷完成签到 ,获得积分10
9秒前
桑尼号完成签到,获得积分10
11秒前
小王完成签到,获得积分10
11秒前
帅玉玉完成签到,获得积分10
12秒前
dominic12361完成签到 ,获得积分10
13秒前
悦耳的城完成签到 ,获得积分10
13秒前
张翼德发布了新的文献求助10
13秒前
勤奋幻天完成签到 ,获得积分10
13秒前
康轲完成签到,获得积分10
13秒前
lllllnnnnj完成签到,获得积分10
14秒前
15秒前
Mastar完成签到,获得积分10
15秒前
ccc完成签到 ,获得积分10
16秒前
caozhi完成签到,获得积分10
16秒前
藤井树完成签到,获得积分10
17秒前
Anyemzl完成签到,获得积分10
17秒前
尹兴亮完成签到,获得积分10
19秒前
温暖大米完成签到 ,获得积分10
19秒前
Snowy完成签到,获得积分10
21秒前
邓博完成签到,获得积分10
21秒前
YeeLeeLee完成签到,获得积分10
22秒前
ddd完成签到 ,获得积分10
22秒前
jjyy完成签到,获得积分10
22秒前
谢雨馨发布了新的文献求助10
22秒前
Liu完成签到 ,获得积分10
22秒前
聪明的宛菡完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555929
求助须知:如何正确求助?哪些是违规求助? 3131507
关于积分的说明 9391387
捐赠科研通 2831234
什么是DOI,文献DOI怎么找? 1556405
邀请新用户注册赠送积分活动 726554
科研通“疑难数据库(出版商)”最低求助积分说明 715890