Cyber-Secure SDN: A CNN-Based Approach for Efficient Detection and Mitigation of DDoS Attacks

计算机科学 服务拒绝攻击 计算机安全 软件定义的网络 计算机网络 互联网 万维网
作者
Ashfaq Ahmad Najar,S. Manohar Naik
出处
期刊:Computers & Security [Elsevier BV]
卷期号:139: 103716-103716
标识
DOI:10.1016/j.cose.2024.103716
摘要

Software Defined Networking (SDN) has become popular due to its flexibility and agility in network management, enabling rapid adaptation to changing business requirements, enhancing network performance, and reducing operational costs. However, the ubiquity of internet-based services has given rise to an alarming increase in cyber-attacks, posing serious threats to the security and stability of modern networks. Among these attacks, Distributed Denial of Service (DDoS) attacks have emerged as one of the most devastating, capable of disrupting critical services. Recent studies have shown that Deep Learning (DL) techniques with Software-defined networking have the potential to mitigate these threats effectively. However, existing solutions suffer from issues such as reliance on pre-defined rules and signatures, computational efficiency, low detection rates, and inefficient notification mechanisms, making them ineffective in detecting DDoS attacks. This paper proposes an efficient approach (BRS + CNN) using Balanced Random Sampling (BRS) and Convolutional Neural Networks (CNNs) to detect DDoS attacks in SDN environments. We have applied various mitigation techniques to mitigate these threats, such as filtering, rate limiting, and iptables rule for blocking spoofed IPs. In addition, we introduce a monitoring system that utilizes rate-limiting to oversee blocked IP addresses, ensuring that legitimate traffic is processed efficiently. The proposed model achieves high performance in binary and multi-classification, with an accuracy of over 99.99% for binary classification and 98.64% for multi-classification. Our proposed DDoS detection system not only detects the attack but also sends detailed contextual information to a designated email address. We compare our model with existing literature and demonstrate its superiority using Area Under The Curve (AUC) analysis. Moreover, we evaluated the efficiency and effectiveness of our proposed DDoS mitigation system by conducting a series of experiments across three distinct scenarios: Attack-Free, Attack-No Mitigation, and Attack-Mitigation. These results demonstrate the robustness of our proposed mitigation system in effectively combating DDoS attacks while also safeguarding the seamless continuity of regular network operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冰雪痕完成签到 ,获得积分10
1秒前
英姑应助xiaozou55采纳,获得10
1秒前
于晏发布了新的文献求助10
1秒前
rp发布了新的文献求助10
2秒前
SciGPT应助Yunyunyang采纳,获得10
4秒前
5秒前
5秒前
7秒前
Jasper应助ioio采纳,获得10
7秒前
卢嘉禾完成签到,获得积分10
8秒前
qq完成签到 ,获得积分10
9秒前
LRL完成签到 ,获得积分10
10秒前
Maple发布了新的文献求助10
11秒前
rp完成签到,获得积分10
11秒前
Rondab应助1111采纳,获得10
12秒前
xy发布了新的文献求助10
12秒前
XCHI完成签到,获得积分10
13秒前
蓝莓味香菜完成签到,获得积分10
15秒前
15秒前
16秒前
迷人问兰给迷人问兰的求助进行了留言
17秒前
19秒前
Renee完成签到 ,获得积分10
19秒前
lg应助Kevin采纳,获得10
19秒前
20秒前
追风完成签到 ,获得积分10
20秒前
21秒前
22秒前
23秒前
23秒前
25秒前
sunrise完成签到,获得积分10
25秒前
25秒前
wongtx完成签到,获得积分10
25秒前
25秒前
26秒前
小马甲应助开朗满天采纳,获得10
26秒前
楼小柚完成签到,获得积分10
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952814
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091101
捐赠科研通 3228832
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869189
科研通“疑难数据库(出版商)”最低求助积分说明 801367