Cyber-Secure SDN: A CNN-Based Approach for Efficient Detection and Mitigation of DDoS Attacks

计算机科学 服务拒绝攻击 计算机安全 软件定义的网络 计算机网络 互联网 万维网
作者
Ashfaq Ahmad Najar,S. Manohar Naik
出处
期刊:Computers & Security [Elsevier]
卷期号:139: 103716-103716
标识
DOI:10.1016/j.cose.2024.103716
摘要

Software Defined Networking (SDN) has become popular due to its flexibility and agility in network management, enabling rapid adaptation to changing business requirements, enhancing network performance, and reducing operational costs. However, the ubiquity of internet-based services has given rise to an alarming increase in cyber-attacks, posing serious threats to the security and stability of modern networks. Among these attacks, Distributed Denial of Service (DDoS) attacks have emerged as one of the most devastating, capable of disrupting critical services. Recent studies have shown that Deep Learning (DL) techniques with Software-defined networking have the potential to mitigate these threats effectively. However, existing solutions suffer from issues such as reliance on pre-defined rules and signatures, computational efficiency, low detection rates, and inefficient notification mechanisms, making them ineffective in detecting DDoS attacks. This paper proposes an efficient approach (BRS + CNN) using Balanced Random Sampling (BRS) and Convolutional Neural Networks (CNNs) to detect DDoS attacks in SDN environments. We have applied various mitigation techniques to mitigate these threats, such as filtering, rate limiting, and iptables rule for blocking spoofed IPs. In addition, we introduce a monitoring system that utilizes rate-limiting to oversee blocked IP addresses, ensuring that legitimate traffic is processed efficiently. The proposed model achieves high performance in binary and multi-classification, with an accuracy of over 99.99% for binary classification and 98.64% for multi-classification. Our proposed DDoS detection system not only detects the attack but also sends detailed contextual information to a designated email address. We compare our model with existing literature and demonstrate its superiority using Area Under The Curve (AUC) analysis. Moreover, we evaluated the efficiency and effectiveness of our proposed DDoS mitigation system by conducting a series of experiments across three distinct scenarios: Attack-Free, Attack-No Mitigation, and Attack-Mitigation. These results demonstrate the robustness of our proposed mitigation system in effectively combating DDoS attacks while also safeguarding the seamless continuity of regular network operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静碧灵完成签到,获得积分10
1秒前
小王同学完成签到 ,获得积分10
2秒前
2秒前
IAMXC发布了新的文献求助30
2秒前
wenny发布了新的文献求助10
3秒前
kchrisuzad发布了新的文献求助30
5秒前
托塔小姐发布了新的文献求助10
6秒前
华仔应助zr237618采纳,获得10
6秒前
冷傲书萱应助LYB吕采纳,获得10
6秒前
飘柔完成签到,获得积分20
7秒前
7秒前
8秒前
NexusExplorer应助IAMXC采纳,获得10
8秒前
8秒前
向前完成签到,获得积分10
8秒前
长情伊应助明亮的涵山采纳,获得10
9秒前
李杰发布了新的文献求助10
9秒前
9秒前
李爱国应助内向忆南采纳,获得10
9秒前
wenny完成签到,获得积分10
10秒前
11秒前
无心的枫完成签到 ,获得积分10
11秒前
11秒前
开心草丛完成签到 ,获得积分10
13秒前
Owen应助bvuiragybv采纳,获得10
13秒前
粘豆包完成签到 ,获得积分10
13秒前
哇咔咔发布了新的文献求助10
13秒前
Frank发布了新的文献求助10
13秒前
禾禾完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
16秒前
开心草丛关注了科研通微信公众号
16秒前
123发布了新的文献求助10
17秒前
kchrisuzad发布了新的文献求助10
17秒前
CipherSage应助美君采纳,获得10
20秒前
21秒前
大宋发布了新的文献求助10
21秒前
jingtanhao发布了新的文献求助10
22秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141883
求助须知:如何正确求助?哪些是违规求助? 2792846
关于积分的说明 7804392
捐赠科研通 2449137
什么是DOI,文献DOI怎么找? 1303086
科研通“疑难数据库(出版商)”最低求助积分说明 626769
版权声明 601265