ResD-Net: A model for rapid prediction of antioxidant activity in gentian root using FT-IR spectroscopy

抗氧化剂 化学计量学 生物系统 化学 人工智能 DPPH 残余物 词根(语言学) 特征(语言学) 均方误差 计算机科学 机器学习 色谱法 算法 生物化学 生物 统计 数学 哲学 语言学
作者
Xiaokun Li,Pan Zeng,Xunxun Wu,Xintong Yang,Jingcang Lin,Peizhong Liu,Yuanzhong Wang,Yong Diao
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:310: 123848-123848 被引量:2
标识
DOI:10.1016/j.saa.2024.123848
摘要

Gentian, an herb resource known for its antioxidant properties, has garnered significant attention. However, existing methods are time-consuming and destructive for assessing the antioxidant activity in gentian root samples. In this study, we propose a method for swiftly predicting the antioxidant activity of gentian root using FT-IR spectroscopy combined with chemometrics. We employed machine learning and deep learning models to establish the relationship between FT-IR spectra and DPPH free radical scavenging activity. The results of model fitting reveal that the deep learning model outperforms the machine learning model. The model's performance was enhanced by incorporating the Double-Net and residual connection strategy. The enhanced model, named ResD-Net, excels in feature extraction and also avoids gradient vanishing. The ResD-Net model achieves an R2 of 0.933, an RMSE of 0.02, and an RPD of 3.856. These results support the accuracy and applicability of this method for rapidly predicting antioxidant activity in gentian root samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nini完成签到,获得积分10
1秒前
1秒前
1秒前
FloppyWow发布了新的文献求助10
2秒前
2秒前
2秒前
白白发布了新的文献求助10
3秒前
隐形曼青应助小猴采纳,获得10
3秒前
灵巧荆发布了新的文献求助10
3秒前
4秒前
kdkfjaljk关注了科研通微信公众号
5秒前
Jackson发布了新的文献求助10
5秒前
5秒前
phz发布了新的文献求助10
5秒前
贺兰鸵鸟完成签到,获得积分10
5秒前
马保国123发布了新的文献求助10
6秒前
6秒前
直率尔芙完成签到,获得积分10
6秒前
shenyanlei完成签到,获得积分20
6秒前
尔云发布了新的文献求助20
6秒前
wwuu完成签到,获得积分10
6秒前
6秒前
xiaoxiaomi应助阳光下的星星采纳,获得20
7秒前
爱X7的嘛喽完成签到,获得积分10
7秒前
Louise完成签到,获得积分10
7秒前
7秒前
喜悦中道应助白白采纳,获得10
8秒前
CipherSage应助dong采纳,获得10
9秒前
9秒前
9秒前
zz完成签到 ,获得积分10
9秒前
9秒前
223344完成签到,获得积分10
10秒前
欧阳半仙完成签到,获得积分10
10秒前
11秒前
bkagyin应助xm采纳,获得10
11秒前
赘婿应助gwh68964402gwh采纳,获得10
11秒前
我瞎蒙完成签到,获得积分10
12秒前
yzz发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762