亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Koopman-VAE Based Process Monitoring for Industrial Biosystems

水准点(测量) 计算机科学 过程(计算) 非线性系统 人工神经网络 理论(学习稳定性) 残余物 操作员(生物学) 分解 数据挖掘 人工智能 机器学习 算法 生态学 生物化学 化学 物理 大地测量学 量子力学 抑制因子 生物 转录因子 基因 地理 操作系统
作者
Yanhui Liu,Saiwei Wang,XU Libin
标识
DOI:10.1109/icdsca59871.2023.10392464
摘要

Industrial biosystem (IBS) applies biological principles and technologies to the industrial sector, encompassing bioreactors, fermenters, and biosensors. It is extensively employed in the pharmaceutical, food, and chemical industries. Ensuring the stability of IBS is crucial to maintaining production quality, and thus, real-time and accurate monitoring is necessary. Generally, monitoring involves detecting changes in the quantity of molecules to determine whether the system is relatively stable. However, due to the complexity, non-linearity and remarkable intrinsic uncertainties of IBS, process monitoring can be challenging. To tackle this issue, we propose an innovative, entirely data-driven detecting and monitoring technology that combines Koopman theory and deep neural networks to effectively analyze the nonlinear dynamical system. We use the spectral decomposition of the Koopman operator, often through Dynamic Mode Decomposition (DMD), for state prediction. Additionally, we employ a neural network to identify nonlinear observation basis functions. The optimal residual sequence is analyzed using probability graphs to enable real-time monitoring. The effectiveness of our approach is demonstrated through testing on two canonical gene expression systems, characterized by intrinsic stochastic dynamics, providing a unique benchmark for comparing performance across diverse process monitoring algorithms, thereby extending the contributions of this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早川完成签到,获得积分10
14秒前
14秒前
科研通AI2S应助魏欣娜采纳,获得10
16秒前
可爱的函函应助早川采纳,获得10
22秒前
馍夹菜完成签到,获得积分10
22秒前
26秒前
40秒前
Vivian发布了新的文献求助30
45秒前
Fox完成签到,获得积分10
50秒前
科研通AI2S应助魏欣娜采纳,获得10
53秒前
53秒前
维颖完成签到,获得积分10
55秒前
1分钟前
1分钟前
1分钟前
zhvjdb发布了新的文献求助10
1分钟前
Raju发布了新的文献求助100
1分钟前
英姑应助lpy李采纳,获得10
1分钟前
1分钟前
zhvjdb完成签到,获得积分10
1分钟前
Yuuw发布了新的文献求助10
1分钟前
bastien驳回了xxfsx应助
1分钟前
1分钟前
1分钟前
Huzhu应助魏欣娜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Yuuw完成签到,获得积分10
1分钟前
1分钟前
Sherry发布了新的文献求助20
1分钟前
充电宝应助青柠采纳,获得10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
2分钟前
2分钟前
33发布了新的文献求助10
2分钟前
2分钟前
田様应助yydcmnyxx采纳,获得30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430