HR-BGCN : Predicting readmission for heart failure from electronic health records

机器学习 计算机科学 心力衰竭 图形 人工智能 算法 医学 理论计算机科学 内科学
作者
Huiting Ma,Dengao Li,Jumin Zhao,Wenjing Li,Jian Fu,Chunxia Li
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:150: 102829-102829 被引量:4
标识
DOI:10.1016/j.artmed.2024.102829
摘要

Heart failure has become a huge public health problem, and failure to accurately predict readmission will further lead to the disease's high cost and high mortality. The construction of readmission prediction model can assist doctors in making decisions to prevent patients from deteriorating and reduce the cost burden. This paper extracts the patient discharge records from the MIMIC-III database. It divides the patients into three research categories: no readmission, readmission within 30 days, and readmission after 30 days, to predict the readmission of patients. We propose the HR-BGCN model to predict the readmission of patients. First, we use the Adaptive-TMix to improve the prediction indicators of a few categories and reduce the impact of unbalanced categories. Then, the knowledge-informed graph attention mechanism is proposed. By introducing a document-level explicit diagram structure, the coding ability of graph node features is significantly improved. The paragraph-level representation obtained through graph learning is combined with the context token-level representation of BERT, and finally, the multi-classification task is carried out. We also compare several typical graph learning classification models to verify the model's effectiveness, such as the IA-GCN model, GAT model, etc. The results show that the average F1 score of the HR-BGCN model proposed in this paper for 30-day readmission of heart failure patients is 88.26%, and the average accuracy is 90.47%. The HR-BGCN model is significantly better than the graph learning classification model for predicting heart failure readmission. It can help doctors predict the 30-day readmission of patients, then reduce the readmission rate of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
妥妥酱完成签到,获得积分10
2秒前
可爱多发布了新的文献求助10
2秒前
cqhecq完成签到,获得积分10
2秒前
kiki完成签到,获得积分10
2秒前
yfy_fairy完成签到,获得积分10
4秒前
张喜铨发布了新的文献求助30
4秒前
幽默的棒球完成签到,获得积分10
4秒前
执名之念完成签到,获得积分10
5秒前
丘比波比发布了新的文献求助50
5秒前
Forever完成签到 ,获得积分10
6秒前
小熊完成签到,获得积分10
6秒前
哒丝萌德发布了新的文献求助10
7秒前
冷静的天与完成签到,获得积分20
8秒前
9秒前
wnche完成签到,获得积分10
9秒前
哇samm完成签到,获得积分10
10秒前
香云发布了新的文献求助10
11秒前
柳七完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
清晨牛完成签到,获得积分10
12秒前
不忘初心完成签到,获得积分10
13秒前
甜兰儿发布了新的文献求助10
14秒前
韭菜盒子发布了新的文献求助10
14秒前
15秒前
活力山蝶完成签到,获得积分10
15秒前
16秒前
wanganjing发布了新的文献求助10
16秒前
科研通AI6应助hzs采纳,获得50
17秒前
Yuuuuu发布了新的文献求助10
17秒前
17秒前
Diana完成签到,获得积分10
18秒前
18秒前
勤奋的凌香完成签到,获得积分10
19秒前
香云完成签到,获得积分10
19秒前
科研通AI2S应助vivi采纳,获得30
19秒前
FashionBoy应助chenxue采纳,获得10
19秒前
炙热尔烟完成签到,获得积分10
19秒前
无聊的迎波完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600432
求助须知:如何正确求助?哪些是违规求助? 4686051
关于积分的说明 14841577
捐赠科研通 4676571
什么是DOI,文献DOI怎么找? 2538725
邀请新用户注册赠送积分活动 1505789
关于科研通互助平台的介绍 1471195