HR-BGCN : Predicting readmission for heart failure from electronic health records

机器学习 计算机科学 心力衰竭 图形 人工智能 算法 医学 理论计算机科学 内科学
作者
Huiting Ma,Dengao Li,Jumin Zhao,Wenjing Li,Jian Fu,Chunxia Li
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:150: 102829-102829 被引量:3
标识
DOI:10.1016/j.artmed.2024.102829
摘要

Heart failure has become a huge public health problem, and failure to accurately predict readmission will further lead to the disease's high cost and high mortality. The construction of readmission prediction model can assist doctors in making decisions to prevent patients from deteriorating and reduce the cost burden. This paper extracts the patient discharge records from the MIMIC-III database. It divides the patients into three research categories: no readmission, readmission within 30 days, and readmission after 30 days, to predict the readmission of patients. We propose the HR-BGCN model to predict the readmission of patients. First, we use the Adaptive-TMix to improve the prediction indicators of a few categories and reduce the impact of unbalanced categories. Then, the knowledge-informed graph attention mechanism is proposed. By introducing a document-level explicit diagram structure, the coding ability of graph node features is significantly improved. The paragraph-level representation obtained through graph learning is combined with the context token-level representation of BERT, and finally, the multi-classification task is carried out. We also compare several typical graph learning classification models to verify the model's effectiveness, such as the IA-GCN model, GAT model, etc. The results show that the average F1 score of the HR-BGCN model proposed in this paper for 30-day readmission of heart failure patients is 88.26%, and the average accuracy is 90.47%. The HR-BGCN model is significantly better than the graph learning classification model for predicting heart failure readmission. It can help doctors predict the 30-day readmission of patients, then reduce the readmission rate of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
little elvins完成签到,获得积分10
1秒前
fan完成签到 ,获得积分10
1秒前
flac完成签到,获得积分10
1秒前
wuhao完成签到 ,获得积分0
3秒前
longmad完成签到,获得积分10
3秒前
shy完成签到,获得积分10
4秒前
橙子完成签到 ,获得积分10
4秒前
4秒前
5秒前
小白完成签到,获得积分10
5秒前
好名字完成签到,获得积分10
7秒前
chen完成签到,获得积分10
8秒前
lefora完成签到,获得积分10
9秒前
勇者先享受生活完成签到 ,获得积分10
9秒前
gdh发布了新的文献求助10
9秒前
舒心夏云完成签到,获得积分10
10秒前
开心完成签到,获得积分10
12秒前
轻歌水越完成签到 ,获得积分10
12秒前
绿袖子完成签到,获得积分10
14秒前
shang完成签到 ,获得积分10
14秒前
情怀应助舒心夏云采纳,获得10
14秒前
冷傲迎梦完成签到,获得积分10
14秒前
杨一完成签到 ,获得积分10
16秒前
彭于晏应助留下小秘密采纳,获得10
16秒前
qin希望完成签到,获得积分10
16秒前
单薄的钢笔完成签到,获得积分10
18秒前
偷书贼完成签到,获得积分10
18秒前
20秒前
传奇3应助木川采纳,获得10
20秒前
yeti完成签到,获得积分10
23秒前
Linda完成签到,获得积分10
23秒前
今后应助康2000采纳,获得10
24秒前
131完成签到,获得积分10
26秒前
乐观的忆枫完成签到,获得积分10
26秒前
米共完成签到 ,获得积分10
26秒前
dffwlj完成签到,获得积分10
28秒前
帅气的醉蝶完成签到,获得积分10
28秒前
jzs完成签到 ,获得积分10
28秒前
光芒万张完成签到 ,获得积分10
29秒前
不无聊的从梦完成签到 ,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150649
求助须知:如何正确求助?哪些是违规求助? 2802188
关于积分的说明 7846347
捐赠科研通 2459500
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628818
版权声明 601757