HR-BGCN : Predicting readmission for heart failure from electronic health records

机器学习 计算机科学 心力衰竭 图形 人工智能 算法 医学 理论计算机科学 内科学
作者
Huiting Ma,Dengao Li,Jumin Zhao,Wenjing Li,Jian Fu,Chunxia Li
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:150: 102829-102829 被引量:4
标识
DOI:10.1016/j.artmed.2024.102829
摘要

Heart failure has become a huge public health problem, and failure to accurately predict readmission will further lead to the disease's high cost and high mortality. The construction of readmission prediction model can assist doctors in making decisions to prevent patients from deteriorating and reduce the cost burden. This paper extracts the patient discharge records from the MIMIC-III database. It divides the patients into three research categories: no readmission, readmission within 30 days, and readmission after 30 days, to predict the readmission of patients. We propose the HR-BGCN model to predict the readmission of patients. First, we use the Adaptive-TMix to improve the prediction indicators of a few categories and reduce the impact of unbalanced categories. Then, the knowledge-informed graph attention mechanism is proposed. By introducing a document-level explicit diagram structure, the coding ability of graph node features is significantly improved. The paragraph-level representation obtained through graph learning is combined with the context token-level representation of BERT, and finally, the multi-classification task is carried out. We also compare several typical graph learning classification models to verify the model's effectiveness, such as the IA-GCN model, GAT model, etc. The results show that the average F1 score of the HR-BGCN model proposed in this paper for 30-day readmission of heart failure patients is 88.26%, and the average accuracy is 90.47%. The HR-BGCN model is significantly better than the graph learning classification model for predicting heart failure readmission. It can help doctors predict the 30-day readmission of patients, then reduce the readmission rate of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助一匹野马采纳,获得10
1秒前
曾经的代曼完成签到 ,获得积分20
2秒前
2秒前
Jasper应助聪聪great采纳,获得10
2秒前
3秒前
mjnrhw发布了新的文献求助10
3秒前
塔图姆发布了新的文献求助10
3秒前
4秒前
健壮的以莲应助杨昕采纳,获得30
5秒前
朻安完成签到,获得积分10
5秒前
NexusExplorer应助西小喵采纳,获得10
5秒前
莫宝完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
需要文献求求完成签到 ,获得积分10
9秒前
强砸完成签到,获得积分10
9秒前
9秒前
现实的又夏完成签到,获得积分10
9秒前
9秒前
zhangyu应助可鹿丽采纳,获得10
11秒前
虚心幻嫣发布了新的文献求助10
12秒前
莫愁完成签到 ,获得积分10
12秒前
偷乐发布了新的文献求助10
12秒前
Rsoup完成签到,获得积分10
13秒前
多喝水完成签到 ,获得积分10
13秒前
anyilin发布了新的文献求助10
14秒前
幸福妙柏完成签到 ,获得积分10
15秒前
Rsoup发布了新的文献求助10
15秒前
怕黑的老九完成签到,获得积分10
15秒前
mjnrhw完成签到,获得积分10
16秒前
heisa完成签到,获得积分10
17秒前
一段段完成签到,获得积分10
18秒前
z69823发布了新的文献求助10
18秒前
顾矜应助无误采纳,获得10
18秒前
虚心迎曼发布了新的文献求助30
20秒前
棉花摘心完成签到,获得积分10
20秒前
JamesPei应助羔羊采纳,获得10
21秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061