过氧化氢酶
催化作用
扫描电子显微镜
金属有机骨架
傅里叶变换红外光谱
化学
结晶度
电子顺磁共振
化学工程
材料科学
核化学
光化学
结晶学
有机化学
物理
抗氧化剂
吸附
核磁共振
工程类
复合材料
作者
Wenping Yang,Longjiao Zhu,Wentao Xu
标识
DOI:10.1016/j.jece.2024.112358
摘要
Developing an efficient advanced oxidation technology is of great significance for water treatment and environmental protection. Here, inspired by the structure and feature of coenzyme B12 in natural enzymes (cleavage of Co-C bond triggers the generation of radical), a Co based metal-organic framework (Co-MOF) with catalase-mimicking activity was synthesized and applied in the degradation of organic dyes. Firstly, Co-MOF nanozyme was fabricated via the coordination self-assembly strategy at room temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive scanning (EDS), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and structure. The results showed that the obtained Co-MOF nanozyme was rhombic dodecahedral morphology with a size of ∼ 500 nm and excellent crystallinity. The enzymatic experiments proved that such nanozyme possessed a single catalase-like activity. Further research results demonstrated that Co-MOF-based degradation process of acid fuchsin (AF) or crystal violet (CV) had excellent pH adaptability (pH > 5.0). Unexpectedly, an ultra-high catalytic degradation rate (211.35 min−1 g−1 L) was successfully achieved in the catalytic degradation of AF, and it was approximately 5∼200 times of the previous optimal nanozyme or catalysts. In complex matrices and real wastewater, this catalytic process could still maintain degradation efficiency above 90% or even higher within 5 minutes, proving its excellent stability and adaptability. The results of radical and electron quenching experiments, electron paramagnetic resonance (EPR), and electrochemical analysis demonstrated that the excellent catalytic degradation performance was attributed to the generation of reactive oxygen species (ROS) (∙O2 was the main contributor) and the existence of electron transfer. In summary, this new catalytic property endows Co-MOF nanozyme with considerable potential for dye degradation, extending the application scope of catalase mimics.
科研通智能强力驱动
Strongly Powered by AbleSci AI