A coupled DEM-CFD analysis of asphaltene particles agglomeration in turbulent pipe flow

集聚经济 计算流体力学 湍流 机械 流量(数学) 沥青质 材料科学 环境科学 化学工程 工程类 物理
作者
Seyedeh Fatemeh Hosseini,Mehrdad Mozaffarian,Bahram Dabir,H.E.A. van den Akker
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:486: 150070-150070 被引量:2
标识
DOI:10.1016/j.cej.2024.150070
摘要

We performed numerical investigations of the agglomeration behaviour of asphaltene particles in a turbulent pipe flow by using a commercial discrete element modelling (DEM) software, EDEM, coupled with a computational fluid dynamics (CFD) software package, FLUENT, in four-way coupling. We describe the particle–particle and particle–wall interactions to the Hertz–Mindlin approach extended with the Johnson–Kendall–Roberts contact force model. The very small size of asphaltene particles, however, requires minor time steps resulting in excessively long computing times. To reduce the latter, we developed a novel scaling method in which (a) the value of the shear modulus is reduced while the non-dimensional Cohesion number is kept constant by also reducing the value of the interfacial energy, and (b) the values of the friction parameters are adapted. We calibrated our scaling method by means of two tests, viz. the stop distance of a single particle sliding and rolling over a flat surface, and a common angle of repose test, both for particles 100 and 60 µm in size. As a result, we were able to increase both the Rayleigh time step and the DEM time step by a factor of 25. The eventual DEM/CFD simulations for 5 µm particles in a turbulent pipe flow still took almost 4 months on a 48 cores workstation. They resulted in visualisations and in quantitative data on, among other things, number and size (gyration radius) of agglomerates, their fractal dimension, and a coordination number, all as a function of time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Passion采纳,获得10
刚刚
MXJ完成签到,获得积分10
1秒前
科研通AI5应助热心的早晨采纳,获得10
1秒前
txy完成签到,获得积分10
1秒前
1秒前
GCY完成签到,获得积分10
1秒前
cc完成签到,获得积分10
1秒前
han完成签到,获得积分10
2秒前
111完成签到,获得积分20
2秒前
通~发布了新的文献求助10
3秒前
hhh关闭了hhh文献求助
3秒前
章丘吴彦祖完成签到,获得积分20
3秒前
4秒前
研友_nv2r4n完成签到,获得积分10
4秒前
狂野觅云完成签到,获得积分10
4秒前
4秒前
小石完成签到,获得积分10
5秒前
独特的飞烟完成签到,获得积分10
5秒前
5秒前
科研猪完成签到,获得积分10
6秒前
大个应助qqwxp采纳,获得10
6秒前
jennifercui完成签到,获得积分10
6秒前
SXM完成签到,获得积分10
6秒前
酷酷的起眸完成签到,获得积分10
7秒前
细腻沅完成签到,获得积分10
7秒前
LILING完成签到,获得积分10
7秒前
123发布了新的文献求助10
8秒前
赖床艺术家完成签到,获得积分10
9秒前
领导范儿应助通~采纳,获得10
10秒前
端庄的黑米完成签到,获得积分10
10秒前
10秒前
领导范儿应助坤坤采纳,获得10
10秒前
11秒前
神勇的雅香应助司徒迎曼采纳,获得10
11秒前
11秒前
bkagyin应助椰子采纳,获得10
11秒前
Owen应助舒服的茹嫣采纳,获得10
11秒前
呼吸之野应助按住心动采纳,获得20
12秒前
12秒前
身为风帆发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740