Direct three-dimensional segmentation of prostate glands with nnU-Net

分割 计算机科学 前列腺 前列腺癌 人工智能 数字化病理学 H&E染色 病理 深度学习 前列腺活检 图像分割 模式识别(心理学) 医学 癌症 内科学 免疫组织化学
作者
Rui Wang,Sarah S. L. Chow,Robert Serafin,Weisi Xie,Qinghua Han,Elena Baraznenok,Lydia Lan,Kevin W. Bishop,Jonathan Liu
出处
期刊:Journal of Biomedical Optics 卷期号:29 (03) 被引量:1
标识
DOI:10.1117/1.jbo.29.3.036001
摘要

SignificanceIn recent years, we and others have developed non-destructive methods to obtain three-dimensional (3D) pathology datasets of clinical biopsies and surgical specimens. For prostate cancer risk stratification (prognostication), standard-of-care Gleason grading is based on examining the morphology of prostate glands in thin 2D sections. This motivates us to perform 3D segmentation of prostate glands in our 3D pathology datasets for the purposes of computational analysis of 3D glandular features that could offer improved prognostic performance.AimTo facilitate prostate cancer risk assessment, we developed a computationally efficient and accurate deep learning model for 3D gland segmentation based on open-top light-sheet microscopy datasets of human prostate biopsies stained with a fluorescent analog of hematoxylin and eosin (H&E).ApproachFor 3D gland segmentation based on our H&E-analog 3D pathology datasets, we previously developed a hybrid deep learning and computer vision-based pipeline, called image translation-assisted segmentation in 3D (ITAS3D), which required a complex two-stage procedure and tedious manual optimization of parameters. To simplify this procedure, we use the 3D gland-segmentation masks previously generated by ITAS3D as training datasets for a direct end-to-end deep learning-based segmentation model, nnU-Net. The inputs to this model are 3D pathology datasets of prostate biopsies rapidly stained with an inexpensive fluorescent analog of H&E and the outputs are 3D semantic segmentation masks of the gland epithelium, gland lumen, and surrounding stromal compartments within the tissue.ResultsnnU-Net demonstrates remarkable accuracy in 3D gland segmentations even with limited training data. Moreover, compared with the previous ITAS3D pipeline, nnU-Net operation is simpler and faster, and it can maintain good accuracy even with lower-resolution inputs.ConclusionsOur trained DL-based 3D segmentation model will facilitate future studies to demonstrate the value of computational 3D pathology for guiding critical treatment decisions for patients with prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Akim应助苦逼的科研人采纳,获得10
3秒前
4秒前
309175700@qq.com完成签到,获得积分10
6秒前
6秒前
搜集达人应助心静如水采纳,获得10
6秒前
细心怜寒完成签到,获得积分10
9秒前
9秒前
桐桐应助星桥火树彻明开采纳,获得10
10秒前
wuqian发布了新的文献求助10
11秒前
11秒前
Vicky发布了新的文献求助10
13秒前
CUREME完成签到,获得积分10
14秒前
细心怜寒发布了新的文献求助10
14秒前
16秒前
无名老大应助dingshukai1234采纳,获得30
17秒前
袁宁蔓完成签到,获得积分10
17秒前
21秒前
互助遵法尚德应助tong采纳,获得10
21秒前
袁宁蔓发布了新的文献求助200
22秒前
科目三应助细心怜寒采纳,获得10
23秒前
24秒前
Denvir完成签到 ,获得积分10
24秒前
天天开心发布了新的文献求助10
25秒前
Sissi完成签到,获得积分10
26秒前
XxxxxtPuCO完成签到,获得积分20
27秒前
27秒前
28秒前
29秒前
30秒前
30秒前
深情不弱发布了新的文献求助10
32秒前
32秒前
精明人达完成签到,获得积分10
34秒前
ThanhHuy发布了新的文献求助10
35秒前
李欢发布了新的文献求助10
36秒前
37秒前
38秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374051
求助须知:如何正确求助?哪些是违规求助? 2991124
关于积分的说明 8743907
捐赠科研通 2674827
什么是DOI,文献DOI怎么找? 1465344
科研通“疑难数据库(出版商)”最低求助积分说明 677818
邀请新用户注册赠送积分活动 669366