Uncertainty-Aware Temporal Graph Convolutional Network for Traffic Speed Forecasting

计算机科学 图形 卷积神经网络 人工智能 理论计算机科学
作者
Weizhu Qian,Thomas D. Nielsen,Yan Zhao,Kim G. Larsen,James J. Q. Yu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 8578-8590 被引量:2
标识
DOI:10.1109/tits.2024.3365721
摘要

Traffic speed forecasting has been a very active research area as it is essential for Intelligent Transportation Systems. Although a plethora of deep learning methods have been proposed for traffic speed forecasting, the majority of them can only make point-wise prediction, which may not provide enough information for critical real-world scenarios where prediction confidence also need to be estimated, e.g., route planning for ambulances and rescue vehicles. To address this issue, we propose a novel uncertainty-aware deep learning method coined Uncertainty-Aware Temporal Graph Convolutional Network (UAT-GCN). UAT-GCN employs a Graph Convolutional Network and Gated Recurrent Unit based architecture to capture spatio-temporal dependencies. In addition, UAT-GCN consists of a specialized regressor for estimating both epistemic (model-related) and aleatoric (data-related) uncertainty. In particular, UAT-GCN utilizes Monte Carlo dropout and predictive variances to estimate epistemic and aleatoric uncertainty, respectively. In addition, we also consider the recursive dependency between predictions to further improve the forecasting performance. An extensive empirical study with real datasets offers evidence that the proposed model is capable of advancing current state-of-the-arts in terms of point-wise forecasting and quantifying prediction uncertainty with high reliability. The obtained results suggest that, compared to existing methods, the RMSE and MAE of the proposed model on the SZ-taxi dataset are reduced by $2.15\%$ and $7.23\%$ , respectively; the RMSE and MAE of the proposed model on the Los-loop dataset are reduced by $4.17\%$ and $8.53\%$ , respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山月鹿发布了新的文献求助10
1秒前
拆东墙发布了新的文献求助10
1秒前
科研通AI5应助饱满小兔子采纳,获得10
1秒前
Jasper应助72采纳,获得10
2秒前
科研通AI5应助石水之采纳,获得10
3秒前
3秒前
方法发布了新的文献求助10
3秒前
ZHI发布了新的文献求助10
4秒前
lyl19880908应助拆东墙采纳,获得10
6秒前
科研通AI5应助拆东墙采纳,获得10
6秒前
wanci应助jackdu采纳,获得10
6秒前
6秒前
7秒前
7秒前
wanci应助lanlan采纳,获得10
7秒前
9秒前
云出发布了新的文献求助10
9秒前
peng完成签到,获得积分20
9秒前
10秒前
11秒前
11秒前
13秒前
坚定柏柳发布了新的文献求助10
13秒前
我像风一样自由完成签到,获得积分10
13秒前
13秒前
lllxxx完成签到,获得积分10
13秒前
安静乐瑶完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
一颗大门牙完成签到,获得积分20
15秒前
15秒前
Ding发布了新的文献求助10
15秒前
TAA66完成签到,获得积分10
15秒前
隐形曼青应助陶醉羽毛采纳,获得10
16秒前
16秒前
Darren_L完成签到,获得积分10
16秒前
yl完成签到,获得积分10
16秒前
17秒前
唐唐完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320